基于干涉测量的井下分析工具的制作方法

文档序号:5866367阅读:118来源:国知局
专利名称:基于干涉测量的井下分析工具的制作方法
基于干涉测量的井下分析工具
背景技术
现代油田操作者需要获取大量关于井下遇到的参数和条件的信息。这种信息通常包括钻孔所穿过的地层的特征以及与钻孔本身的尺寸和构造有关的数据。可以通过包括电缆测井、“随钻测井”(LWD)和油管传送测井在内的若干方法来执行井下条件相关信息的采集,其通常被称为“测井”。在电缆测井中,在一些或全部的井被钻成之后,将探头或“测井电极系(sonde) ”下放到钻孔中。测井电极系悬挂在对测井电极系提供机械支撑并且还在测井电极系和位于井的地面处的电气设备之间提供电连接的“测井电缆”的长缆或“电缆”的端部。根据现有的测井技术,当测井电极系被拉向井口时,地层的各种参数被测量并与测井电极系在钻孔中的位置联系起来。在LWD中,钻具组件包括当地层被穿透时测量各种参数的感测仪器,从而可以实现地层的测量,而较少地被流体侵入影响。当需要进行LWD测量时,钻井操作所产生的环境通常不利于电子仪表、遥感勘测和传感器操作。油管传送测井是在已有的钻孔内进行的,与电缆测井类似。与电缆测井不同的是, 油管传送测井能够使测井工具移动到悬挂在电缆上的工具无法到达的地方,例如水平或向上的钻孔。油管传送测井工具通常要忍受有限的通信带宽,这意味着所获取的数据通常被存储在存储器中,并且在工具返回到地面时从工具下载。在这些和其它的测井环境中,通常以测井记录的形式记录和显示被测参数,测井记录即为将被测参数显示为工具位置或深度的函数的二维曲线图。除了进行作为深度的函数的参数测量之外,一些测井工具还提供作为方位角的函数的参数测量。这种工具测量常常被显示为钻孔壁的二维图像,一个维度代表工具位置或深度,另一维度代表方位角定向, 像素强度或颜色代表参数值。一旦钻好钻孔,操作者常常希望在确定完井投产策略之前执行井下地层测试。流体取样工具使操作者能够直接从钻孔壁抽出流体样品并且通常基于抽到样品室中的材料的特性(例如光学性质、电性质、密度、NMR和PVT性质)来测量污染程度、成分和相。


结合附图来考虑下面的具体描述,可以更好地理解各个公开的实施例,其中图1显示了例证性的随钻测井(“LWD”)环境;图2显示了例证性的电缆测井环境;图3显示了例证性的油管传送测井环境;图4显示了例证性的地层流体取样工具;图5显示了例证性的基于干涉仪的流体分析器;图6显示了具有集成(“单片”)光路元件的例证性干涉仪;图7显示了使用旋转回射器(spinning retroreflector)的例证性干涉仪;图8显示了第二个例证性的基于干涉仪的流体分析器;以及
图9显示了例证性的基于干涉仪的分析方法。尽管本发明能够接受各种修改和替代形式,但是其特定实施例在图中是以示例方式显示的,并在文中进行了详细的描述。不过,应理解的是,附图及其具体描述并非要对公开进行限制,而是相反,其目的是覆盖落入权利要求的明确语言范围内的所有的修改、等效方式和替代方式。
具体实施例方式因此,本文公开了使用干涉图(通过光波的叠加产生的干涉图案)进行井下光学分析的各种系统和方法。通过在光路中引入干涉仪来产生干涉图,干涉仪的两臂具有以时间为函数变化的传播时间差。光在干涉仪之前或之后与待分析材料相遇,待分析材料例如为来自地层的流体样品、钻孔流体样品、矿样或钻孔壁的一部分。相遇可以以各种形式发生,包括通过样品的透射/衰减、从样品反射、衰减全反射比(倏逝波)、从样品散射以及激发荧光。无论如何,材料的光谱特性会留在光束上,并且可通过执行傅立叶变换以获得光谱或者能够与一个或多个模板相比较的电子处理装置容易地分析所述光谱特性。被设计成在不利的井下环境中良好运行的干涉仪有望实现实验室质量的测量。所公开的系统和方法在其工作所处的较大系统的背景下得到最好的理解。图1显示了例证性的随钻测井(LWD)环境。钻井平台2支撑井架4,井架4具有用于提升和下放钻柱8的游动滑车6。当通过转盘12下放钻柱8时,方钻杆10支撑钻柱8。通过井下电动机和/或钻柱8的转动来驱动钻头14。当钻头14转动时,其产生通过各个地层18的钻孔 16。泥浆泵20使钻井液循环通过到方钻杆10的进给管22、在井下通过钻柱8的内部、通过钻头14中的孔、经由钻柱8周围的环状空间回到地面并进入到保存坑(retention pit) 24 中。钻井液将来自钻孔的钻屑输送到坑M中,并且有助于保持钻孔的完整性。钻头14附近的底部钻具组件中集成有LWD工具26。当钻头使钻孔通过地层延伸时,测井工具26采集与各种地层特性以及工具定向和各种其它的钻井条件有关的测量值。 测井工具沈可以采用钻铤的形式,即提供重量和刚性以辅助钻井过程的厚壁管。如下文进一步说明的,工具组件26包括监测井筒(wellbore)流体特性的光学流体分析工具。可以包括遥测短接(telemetry sub)观以向地面接收器30传送测量数据并且从地面接收指令。 在一些实施例中,遥测短接观不与地面通信,而是存储测井数据,以便后续当收回测井组件时在地面回收数据。在钻井过程中的不同时间,可以如图2所示,从钻孔中移走钻柱8。一旦钻柱已被移走,就可以使用电缆测井工具34 (即通过电缆42悬挂的感测仪器测井电极系,其中电缆 42具有用于向工具传输电力以及从工具向地面传输遥测的电线)来执行测井操作。电缆测井工具34可以具有极板和/或对中弹簧以便当在井口牵拉工具时将工具保持在钻孔轴的附近。如下文进一步说明的,工具34可以包括地层流体取样器,地层流体取样器将探头延伸到钻孔壁上以将流体抽到样品分析室中。地面测井设备44从测井工具34采集测量值, 并且包括用于处理和存储通过测井工具收集的测量值的计算机系统45。一种替代的测井技术是使用盘管(coil tubing)来测井。图3显示了例证性的盘管传送测井系统,在该系统中,通过下管机(tubing injector) 56从卷轴(sp00l)52 拉动盘管M,并且将盘管M通过封隔器(packer) 58和到井62内的防喷器(blowoutpreventer)60射入井中。(也可以通过用井下电动机驱动钻头来以这种方式执行钻井)。 在井内,监控短接(supervisory sub) 64和一个或多个测井工具65连接到盘管M,并且可选地被配置为通过信息管道或其它遥测信道与地面计算机系统66通信。可以设置井口接口 67以交换与监控短接的通信并接收将要传送到地面计算机系统66的数据。地面计算机系统66被配置为在测井过程中与监控短接64通信,或者可选地被配置为当工具组件被收回时从监控短接下载数据。优选地通过软件(在图3中显示为可移动存储介质72的形式)来配置地面计算机系统66,以处理测井工具测量(包括下文进一步描述的干涉图测量)。系统66包括显示设备68和用户输入设备70,以使操作人员能够与系统软件72进行交互。在上述每一种测井环境中,测井工具组件优选地包括导航传感器组件 (navigational sensor package),其包括用于确定底部钻具组件的倾角、水平角和转动角 (也叫做“工具面方位角”)的方向传感器。如现有技术中普遍定义的,倾角是与竖直向下方向的偏离,水平角是在水平面内与真北方向的成角,工具面方位角是与井筒的高侧所成的定向(围绕工具轴的转动)角。根据已知技术,井筒方向测量可以这样进行三轴加速度计相对于被称为“工具面划线”(工具面划线通常在工具表面上画成平行于工具轴的线)的工具轴和工具周线上的点来测量地球的重力场矢量。从该测量可以确定测井组件的倾角和工具面方位角。另外,三轴磁强计以类似的方式测量地球的磁场矢量。从磁强计和加速度计数据的组合可以确定测井组件的水平角。图4显示了例证性的地层流体取样工具80。工具80可以是钻铤、盘管接头或者钻探管(drilling tubular),但最常见的是电缆测井电极系的一部分。工具80延伸探头 82和底座(foot)84以接触钻孔壁16,通常是使用液压来从工具主体向外驱动它们。探头 82和底座84协同工作以将探头牢固地固靠在钻孔壁上,并且建立防止钻孔流体被抽到取样工具中的密封。为了改善密封,探头的壁接触面包括顺应钻孔壁的弹性材料85。泵86降低压强,促进流体从地层流动流过探头通道88、流体分析器92中的样品室90和样品采集室 94。泵86通过出口 96将流体排放到钻孔中,并且继续泵送直到完成取样过程为止。典型地,取样过程继续到工具确定样品采集室94满了且任何的污染物均已被排尽为止。之后, 样品采集室被密封,探头和底座被收回。如需要,工具可以在钻孔内的不同位置重复该过程。样品采集室94可以是盒式机构98中的许多个这样的样品采集室的其中之一,使工具可以使许多流体样品返回地面。图5显示了例证性的基于干涉仪的流体分析器。宽带光源100通过可选的光圈 (aperture) 111辐射光。为了达到本公开的目的,术语“宽带”用于与只在其光谱内提供孤立的尖峰的窄带光源相区别。预期在井下使用的宽带光源具有200-400nm(用于紫外吸收和荧光光谱法)、1500-2300nm (用于特殊用途的光谱法,例如GOR测定)和400-6000nm (用于一般用途的可见-红外光谱法)范围内的连续光谱。这些示例仅为例证性的,而非限制性的。适合于该用途的一种易获得的光源是具有石英管的卤钨白炽光源,产生300-3000nm 范围内的光。准直镜101使来自于光源100的光线平行并将光引向干涉仪110中的分束器102。 分束器将一半光引向固定反射镜103,并将另一半光引向可移动的反射镜104。(反射镜103 和104被显示成回射器,其对未对准误差表现出比平面镜更好的容忍度)。反射镜将光反射回分束器102。在这一点处,光束传播了具有取决于可移动反射镜104的位置的差异的光程。可移动反射镜104来回振荡,导致离开分束器的合成光束发生干涉,干涉方式是使光束的不同频率分量经历与其频率有关的速率下的强度振荡。该合成光束在本文中被称为“光谱化(spectralized) ”光束,因为其使得光束的光谱成分可通过其强度的时间变化来测量。 (在文中,有时将该光谱化光束称为“干涉图”)。当从干涉仪110出射时,光谱化光束从分束器102(经由中间反射镜11 传播到聚焦反射镜105。聚焦反射镜105将光聚焦到样品室106中的一点,之后第二聚焦反射镜 107将光引到探测器108上。探测器108测量入射光强度的时间变化。在一些实施例中,电子装置处理测量到的时间变化,确定揭示样品室106中的材料的透射光谱的傅立叶变换。 不过应注意,傅立叶变换不是强制性的。在一些实施例中,电子装置在时域上对干涉图进行运算,以测量样品室中的材料的特性。每个频率分量的强度变化的速率取决于可移动反射镜104的速度。为了补偿该速度的变化,电子处理装置可以跟踪可移动反射镜的位置。或者,可在宽带光束上添加窄带光束。在图5中,这是通过令激光器109(或其它具有明确的光谱峰的气体放电光源)所发出的光通过准直镜101中的孔或者经由一个或多个反射镜112来插入而实现的。激光源的干涉图中的振荡提供了用于准确跟踪移动的反射镜的位置的手段。类似地,气体放电光谱中的明确的峰使得电子处理装置能够检测和补偿反射镜104的运动的微小不规则和/或提供系统性能的诊断测量。图6显示了具有集成(“单片”)光路元件的例证性干涉仪。集成元件对温度变化、 压强变化、振动和冲击较不敏感。使用固态透明材料块(例如石英、蓝宝石、硒化锌)来作为集成元件的主体。同样是由相同的材料制成的反射镜和分束器熔合或附着在该主体上。 可选的补偿器也可以熔合到适当的位置上。输入光束201穿过主体的抛光面入射到分束器202上。一半光(经由可选的补偿器203)被固定的反射镜204反射,并从反射镜204返回到分束器202。另一半光在集成元件外部经由回射器205传播,以被附着在集成元件主体上的固定的反射镜206反射。光从固定的反射镜206返回(再次经过回射器)到分束器202,在此与来自于其它路径的光合并,形成输出光束206。和前面一样,可移动回射器的运动导致输出光束光谱化。可以通过各种机制来使可移动元件往复运动。在一些实施例中,可移动元件安装在弹簧上,并通过作用于磁体的感应场来驱动。在其它实施例中,使用压电元件将电压转化为轴向运动。类似地,磁场可以驱动磁致伸缩元件。使用像前面那样注入的参考光束,可以直接跟踪或测量可移动回射器的速度。尽管单片式构造提供了更高的稳定性,但回射器的速度仍然会受到振动、冲击或驱动器缺陷的影响。旋转运动通常能被更精确地控制,并且对振动或冲击较不敏感。因此,图7显示了使用旋转回射器(spinning retroreflector)的例证性干涉仪。 光源310所发出的光入射到分束器301上,分束器301使一半光经由第一固定反射镜302 和有孔反射镜304传播到旋转回射器306。(图7实际上显示了回射器的两个位置,目前假设回射器处于用浓阴影显示的上方位置)。回射器306将光反射到有孔反射镜304,有孔反射镜304使光沿该路径返回到分束器301。另一半光类似地经由第二固定反射镜303和第二有孔反射镜305传播到旋转回射器306。回射器将光反射到光有孔反射镜305,有孔反射
7镜305使光沿该路径返回到分束器301。来自于这两个路径的合成光在干涉仪311处出射以照射在样品上,并通过探测器进行测量。该配置利用了角形反射器的两种特性。首先,角形反射器是回射器类型的,这意味着入射光在平行于入射光的方向上反射,无论入射方向如何。其次,当光从离轴方向入射到回射器上时,光所传播的距离根据光在基准面内距离轴的偏距来变化。(基准面包含角形反射器的顶点,并垂直于角形反射器的轴来定向)。因此,当角形反射器绕偏移轴旋转时,以一角度入射到角形反射器上的光的光路的长度经历周期振荡。如图7所示以相反角度入射的光的光路经历与第一光路的振荡相位相差180°的周期振荡,从而使两个光路的长度差加倍。旋转角形反射器306的使用提供了改善的性能,因为即使存在振动,也能精确地控制旋转运动,并且能够容易地测量转动物体的位置,例如使用转动位置编码器来测量。由于有了跟踪移动的反射镜的位置的能力,消除了对参考光束的需要。图8显示了例证性的基于干涉仪的流体分析器,其将旋转角形反射器与集成光路元件联用。在图8中,两个集成元件401和402可以分别制造,然后被熔合以形成单一元件。 组合元件包括光束分束器403、两个固定反射镜404、406以及两个具有中心孔的固定反射镜405、407。其操作类似于图7的实施例,角形反射器在偏移轴上旋转以使干涉仪中的两个光路的长度差周期性变化,从而使从干涉仪传播到样品室106、再到探测器108的宽带光光谱化。在所示系统中,光路在干涉仪之后通过样品室106。但是,光路同样可以在进入干涉仪之前通过样品室106。由于具有这种组合特征,所示流体分析器有望提供高精度测量,即使是在井下环境中。注意,可以使用其它用于改变光程差的技术来代替旋转角形反射器。示例包括具有电控折射率的光纤或波导或者具有受控拉伸(stretch)的光纤,例如通过改变由磁致伸缩材料制成或者安装在磁致伸缩材料部件上的光纤包层周围的磁场,或者通过改变穿过压电元件的电场来获得拉伸。图9显示了例证性的基于干涉仪的分析方法。首先在步骤502中,工具产生宽带光。这可以通过多种方式实现,这些方式包括具有或不具有透明灯罩和/或被卤素气体包围的白炽灯、宽带荧光光源、宽带量子光源或者诸如例如LED的多种相对窄带的光源的组合。在步骤504中,工具将光准直并沿着通过使用一个或多个光圈、反射器和透镜的某种组合的设备的光路来引导光。在沿光路的的某个位置,工具使用干涉仪来使光束光谱化,如步骤506所示。干涉仪被设计成在井下环境中工作,例如通过使用在很大范围的温度、压强、 震动和冲击条件下保持反射镜和分束器的对准和间隔的集成光路元件来达此目的。此外, 可移动元件可以采用离轴旋转且与光路成角度定向的角形反射器的形式,从而提供通过干涉仪的光路之间的长度差的振荡变化。总的变化预期在10_4和10_2米之间。该机制在很大范围的工作条件下提供反射器位置的精确控制和测量。在沿光路的其他位置,工具将光引向待分析的材料,如步骤508所示。材料可以是样品室内俘获的或流过窗口的气体、流体或混相流的形式。或者,材料可以是能够通过窗口或开口见到的固体,例如矿样(core sample)或靠近工具的部分钻孔壁。在步骤510中,工具聚集来自于样品的透射光、反射光、散射光和/或发射光或荧光并将其引导到光强探测器。探测器可以采用光电二极管、热探测器(包括温差电堆和热电探测器)、戈莱盒(Golaycell)或光电导元件的形式。可以利用冷却来提高探测器的信噪比。在步骤512中,工具跟踪干涉仪中使用的可移动元件的运动(或用于提供光程变化的一些其他元件的变化)并且用其确定对测量到的信号的适当补偿。在步骤514中,工具使用数字信号处理器、一般用途处理器或其他电子处理装置来将光强信号数字化并将其与运动测量组合处理,以确定入射到探测器上的光的光谱。该光谱被存储到存储器中,后续可能与测量时间和/或工具位置联合使用。在步骤516中,工具处理测量到的干涉图或光谱,以分析被照射的材料的一个或多个参数。该参数被存储、显示或用作后续工具操作的基础(例如在污染物水平充分下降之后决定停止泵送)。例证性的分析包括确定取样流体中的污染物水平、鉴定流体成分、鉴定流体类型、鉴定PVT特性等等。成分分析可以包括确定诸如C02、H2S等等的化合物的浓度、或者确定饱和、芳族、树脂和浙青烯的烃馏分。流体类型确定可以是油、水和气的发现体积百分比。PVT特性可以包括泡点确定、气/油比、密度随压力的变化等等。测量值可被传送到地面以向操作者显示或进行其他处理。已知多种通过反射光、透射光或散射光的光谱来确定成分或类型信息的处理技术。它们包括逆最小二乘回归(Inverse Least Squares Regression)禾口主成分分析 (Principal Component Analysis)。但是,也可以使用其他技术,例如直接对时域信号进行运算,而不是将其转换到谱域。(测量到的干涉图与模板干涉图的关联有望成为测量模板所源自的物质的浓度的有效方式)。也可以在工具中结合各种其他的特征,包括工具配备有用于系统的井下校准以及用于补偿流通池(flow cell)的窗口上的污染物的参考流体的储存器。可以使用冲击和振动监测系统(例如安装在工具上并且被电子处理装置周期性感侧的加速计)来检测可能使测量不太可靠的高振动的周期。在这些周期中采集的测量值可以被废弃或者赋予反应其较小可靠性的较低的权重。可以分析散射光,以确定流体流动中夹带的微粒的尺寸分布。可以包括紫外光源以在材料中诱导荧光,可以分析该荧光以帮助确定样品的成分。为了监测光源的光谱和强度,可以设置旁路以将光引向探测器,而不通过样品室。在一些实施例中, 多种探测器可以与滤波器、分色镜或其他用于将接收光分成最适合于各个探测器测量的频带的分配装置一起使用。一旦完全了解上述公开,许多变化和修改对于本领域技术人员而言将会是显而易见的。权利要求书将会被理解为包含所有这些变化和修改。
权利要求
1.一种井下工具,包括 井下光探测器;宽带光源和所述光探测器之间的光路上的井下干涉仪,其中所述干涉仪从沿所述光路接收的光产生干涉图;所述光路上的窗口,所述窗口能够使沿所述光路接收的光照射待分析的材料;以及电子处理装置,所述电子处理装置连接到光探测器以探测代表沿所述光路接收的光的强度的电子信号,并且从所述电子信号确定所述材料的参数。
2.根据权利要求1所述的工具,其中所述材料是从坐落在钻孔壁上的出口抽出的流体。
3.根据权利要求2所述的工具,其中所述窗口位于存储用于向地面传输的流体的样品室上,所述光路通过所述流体。
4.根据权利要求2所述的工具,其中所述参数是流体的污染物水平。
5.根据权利要求2所述的工具,其中所述参数包括至少一种流体类型的数量。
6.根据权利要求2所述的工具,其中所述参数包括至少一种物质的浓度。
7.根据权利要求2所述的工具,其中所述参数是所述流体中的微粒的尺寸分布。
8.根据权利要求1所述的工具,其中所述材料是钻孔流体,所述参数是流体密度或至少一种流体类型的数量。
9.根据权利要求1所述的工具,其中所述材料是钻孔壁的一部分。
10.根据权利要求1所述的工具,其中所述光探测器感测从所述材料反射的光。
11.根据权利要求1所述的工具,其中所述光探测器感测通过所述材料透射的光。
12.根据权利要求1所述的工具,其中所述干涉仪包括具有低热膨胀系数的集成光路元件。
13.根据权利要求1所述的工具,其中所述干涉仪包括具有连接到所述电子处理装置的位置编码器的旋转回射器。
14.根据权利要求1所述的工具,进一步包括参考光源,所述参考光源提供至少穿过包括所述干涉仪和所述光探测器的光路部分的光,其中所述电子处理装置基于来自于所述参考光源的光的测量确定运动补偿。
15.根据权利要求1所述的工具,其中所述工具适合作为以下装置的至少其中之一的一部分电缆测井组件、钻具组件和油管传送测井装置。
16.根据权利要求1所述的工具,其中所述电子处理装置将所述信号与一个或多个模板关联,以确定至少一种物质的相对浓度。
17.一种井下分析方法,包括沿包括井下干涉仪和用于井下样品照射的窗口的光路引导来自于井下光源的准直光;调制所述干涉仪的一个臂长,以在光到达井下探测器之前将光光谱化; 测量到达所述井下探测器的光的强度;以及使用测量到的强度来确定所述井下样品的特性。
18.根据权利要求17所述的方法,其中所述井下样品是从坐落在钻孔壁上的出口抽出的流体。
19.根据权利要求17所述的方法,其中所述井下样品是钻孔流体或钻孔壁的一部分。
20.根据权利要求17所述的方法,其中所述特性是以下至少其中之一污染物水平、至少一种流体类型的数量、至少一种物质的浓度以及微粒的尺寸分布。
全文摘要
本发明涉及用于通过干涉图(具有包含鉴别频率分量的时间变化的频率分量的光束)进行井下光学分析的各种系统和方法。通过在光路中引入干涉仪来产生干涉图,干涉仪的两臂具有以时间为函数变化的传播时间差。光在干涉仪之前或之后与待分析材料相遇,待分析材料例如为来自地层的流体样品、钻孔流体样品、矿样或钻孔壁的一部分。材料的光谱特性会留在光束上,并且可通过执行傅立叶变换以获得光谱或者能够与一个或多个模板相比较的电子处理装置容易地分析所述光谱特性。被设计成在不利的井下环境中良好运行的干涉仪有望实现实验室质量的测量。
文档编号G01N21/21GK102334024SQ200980157701
公开日2012年1月25日 申请日期2009年12月23日 优先权日2009年12月23日
发明者C·M·琼斯, M·L·莫里斯, S·A·赞诺尼 申请人:哈利伯顿能源服务公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1