多点扰动定位方法、光纤分布式扰动传感器的制作方法

文档序号:6024802阅读:272来源:国知局
专利名称:多点扰动定位方法、光纤分布式扰动传感器的制作方法
技术领域
本发明涉及光纤传感器技术领域,特别涉及一种多点扰动定位方法、光纤分布式扰动传感器。
背景技术
光纤传感器由于其高灵敏度,体积小,重量轻,本质安全,电绝缘性,抗电磁干扰, 相对成本低,多功能性,可靠性高,硬件匹配光纤通信接口,易于组网,特别是可以实现分布式测量等优良特性,在工业、民用和军事领域具有广泛的应用。其中,光纤分布式扰动传感器在周界安防,油气管线监测,大型结构监测和通信线路监测等领域具有重要意义。
光纤分布式扰动传感器可以对传感光纤上任意一点处的扰动(时变信号)进行监测,得到扰动信号的时域波形,根据扰动事件性质进行判断,给出报警信息;同时给出扰动事件发生的空间位置信息。
目前,根据不同的工作原理,光纤分布式传感器可以分为干涉仪型、光纤光栅型、 光时域反射计型,光频域反射计型以及强度调制型等传感技术。
光纤光栅型分布式传感器采用光纤光栅作为敏感元件,在一定长度的间隔之间铺设光纤光栅,通过复用技术实现准分布式传感,因此,光纤光栅型分布式扰动传感器的空间分辨率具有不连续性,且受到光纤光栅空间分布间隔的限制。同时,光纤光栅的集成基于波长复用,在一根光纤上可以复用的光纤光栅数量受到波长区间的限制,其测量长度的增加需要以增大光纤光栅间隔即降低空间分辨率为代价。除了空间分辨率和测量长度间的矛盾外,光纤光栅型分布式传感器的成本也限制了其作为分布式扰动传感器在大范围环境中的应用。
光时域反射计型分布式传感器可以用来检测外界环境中温度或压力的变化,但其响应时间较长,对于外界扰动的实时定位比较困难,不能应用于对时变信号的分布式传感, 因此限制了其作为分布式扰动传感器的应用。
光频域反射计型分布式传感器,基于非线性光学效应,布里渊或拉曼散射,可以对外界的温度和压力进行传感,但其传感信号相对微弱,使得信号的检测和解调相对困难,同时其器件成本也相对较高,限制了其在长距离扰动传感中的应用。
强度调制型传感器基于单模光纤和多模光纤中的模式耦合机理,可以实现对扰动的分布式传感,但其灵敏度和精度较低,为了能够在实际中应用还需进一步解决增敏和提高精度的问题。
综上,在光纤分布式传感器中,干涉仪型分布式传感器具有实现原理简单,灵敏度高,响应速度快,硬件成本低,适于长距离传感等优良特性,已经成为光纤分布式扰动传感器的主要技术方案。
目前,干涉仪型分布式光纤扰动传感器的理论方案主要包括单萨格奈克型、双马赫-泽德型、双萨格奈克型、萨格奈克+迈克尔逊型和萨格奈克+马赫-泽德型,双波长萨格奈克型,双调制频率萨格奈克型等。
基于双马赫-泽德干涉仪的光纤分布式扰动传感器的光路原理图如图1所示。激光器发出的光经过耦合器C1分成两束光,分别沿顺时针和逆时针方向经过由耦合器C2、C3 和它们之间的两根敏感光纤构成的马赫-泽德干涉仪,在耦合器C3和C2处发生干涉并通过探测器PD2和探测器PD1接收干涉信号。以上光路中的光纤均为单模光纤。当扰动作用于传感臂上时,应力会引起光纤长度和传播常数的变化,从而在信号臂和参考臂上产生一个相位差的变化。当光纤长度变化AL,传播常数变化Δ β时,相位差Δ^可以表示为
Αφ=βΜ+ΣΑβ(1)
逆时针和顺时针方向传播的干涉光通过PD1和PD2接收到的信号可以分别表示为
h (0 = AU + K1 cos[A^-0 + %]}(2)
I2 (t) = Z2 {1 + K2 cos[A^(i- 2- 3) + φ0]}(3)
其中,变量t表示时间,t1; t2和t3分别是光沿着光纤Li,L2和L3的传播时间,这里忽略了光源到耦合器C1和耦合器C2到PD1的距离。忽略传感光纤和传导光纤的长度差, 光纤L3的长度可以近似为Ll和L2的长度之和。I1和I2由光源输出的光强决定,K1和K2 是干涉仪的可见度,灼是信号臂和参考臂的臂长差引起的初相差。由式( 和式C3)可得 I1 (t)和I2 (t)的传播时间差为
τ = t^tg-ti(4)
根据传播时间差τ可以得到扰动点的位置
L2 = c τ /2n(5)
上式中,L2是扰动点到耦合器C3的距离,即光纤L2的长度,c是真空中的光速,η是光纤的折射率。计算Ii(t)和I2(t)的互相关函数,根据相关函数的极大值可以求得τ值。 根据τ值可确定两个检测信号之间的时间差并反演出扰动的位置,即实现了定位功能。
现有的双马赫泽德干涉仪型光纤分布式扰动传感器的缺点在于由于长距离传感降低成本的需要,传感器均采用单模光纤。由于单模光纤本身固有的本征双折射和外界随机因素导致的诱导双折射,单模光纤中传输的光波的偏振态会发生随机变化,从而使得发生干涉时,传感臂和参考臂处于相同振动方向的光矢量(电场矢量)分量的幅值发生随机变化,从而使干涉仪输出信号的幅值发生变化,这将引起两路干涉信号输出波形相关性严重降低,导致基于互相关时延的定位算法计算结果错误,从而引起较大的定位误差。特别地,当两臂光波偏振态正交时,将不能发生干涉,干涉仪输出信号的幅值为0,传感器失效, 该问题严重影响了传感器的可靠性。使用保偏光纤替代单模光纤作为敏感元件虽然在短距离可以有效地保持传输光的偏振态,但大大地增加了系统的硬件成本,也限制了该方案的实际应用。发明内容
(一)要解决的技术问题
本发明要解决的技术问题是如何有效地消除光纤分布式扰动传感器固有的偏振衰落并实现光纤分布式扰动传感器的多点扰动定位。
( 二 )技术方案
为解决上述技术问题,本发明提供了一种多点扰动定位方法,包括以下步骤
Sl 分别对接收到的两干涉信号进行隔直操作以去掉两干涉信号中的直流项和低频干扰项,所述两干涉信号中均包括扰动信号;
S2 对所述两干涉信号分别进行移相90°的操作,并分别利用移相90°的信号除以原干涉信号,得到相除后的两干涉信号;
S3 从步骤S2之后的两干涉信号中分别提取出三角函数内的相位信息;
S4 对提取后的两干涉信号进行高通滤波操作以滤除相位缓变的干扰信号;
S5:对高通滤波后的两干涉信号分别进行三角变换、频谱分析并分类讨论以得到扰动位置。
其中,所述步骤Sl中,隔直操作后还包括步骤分别获取两干涉信号的光强与可见度信息并消除干涉信号可见度变化,并对所述两干涉信号经过放大、滤波调理,以抑制噪声和干扰。
其中,所述步骤S2中采用希尔伯特变换将所述两干涉信号移相90°。
其中,所述步骤S3中采用三角函数相位提取算法或PGC调制算法从两干涉信号中分别提取出三角函数内的相位信息。
其中,所述步骤S5中分析得到扰动位置的过程具体如下
通过经过频谱分析的两干涉信号相位谱的比对寻找多点扰动中不同频率成分分量的频率值,再根据这些频率值对应于经过频谱分析的两干涉信号的幅值谱的商联立方程组,从而反解出多点扰动的位置信息。
本发明还提供了一种光纤分布式扰动传感器,包括光源、第一分光耦合设备、光接收装置、第一迈克尔逊干涉仪及第二迈克尔逊干涉仪,所述光源通过光纤连接所述第一分光耦合设备,所述第一分光耦合设备分别通过光纤分别连接所述第一迈克尔逊干涉仪和第二迈克尔逊干涉仪,所述第一迈克尔逊干涉仪和第二迈克尔逊干涉仪通过光纤分别连接光接收装置,所述光接收装置用于接收光源发出的光通过第一迈克尔逊干涉仪和第二迈克尔逊干涉仪后返回的光信号。
其中,所述第一迈克尔逊干涉仪包括光纤延迟环、第一法拉第旋光镜、第二法拉第旋光镜及与所述第一分光耦合设备连接的第二分光耦合设备,所述第二分光耦合设备的一侧通过光纤分别连接第一法拉第旋光镜和第二法拉第旋光镜,另一侧连接所述光接收装置,所述第二分光耦合设备用于使第一法拉第旋光镜反射的光信号和第二法拉第旋光镜反射的光信号干涉,并将干涉后的信号传输给所述光接收装置,光纤延迟环位于所述第一迈克尔逊干涉仪传感臂的光纤上;
所述第二迈克尔逊干涉仪包括第三法拉第旋光镜、第四法拉第旋光镜及与所述第一分光耦合设备连接的第三分光耦合设备,所述第三分光耦合设备的一侧通过光纤分别连接第三法拉第旋光镜和第四法拉第旋光镜,另一侧连接所述光接收装置,所述第三分光耦合设备用于使第三法拉第旋光镜反射的光信号和第四法拉第旋光镜反射的光信号干涉, 并将干涉后的信号传输给所述光接收装置。
其中,所述光接收装置包括第一光电探测器和第二光电探测器,所述第一光电探测器通过光纤连接所述第二分光耦合设备,所述第二光电探测器通过光纤连接所述第三分光耦合设备。
其中,所述光接收装置包括第四分光耦合设备、第五分光耦合设备、第一相位调制器、第二相位调制器、第一光电探测器、第二光电探测器、第三光电探测器和第四光电探测器,
所述第二分光耦合设备通过光纤连接所述第四分光耦合设备,所述第四分光耦合设备的一端通过光纤连接所述第一光电探测器,另一端通过光纤连接第一相位调制器,所述第一相位调制器通过光纤连接所述第三光电探测器;
所述第三分光耦合设备通过光纤连接所述第五分光耦合设备,所述第五分光耦合设备的一端通过光纤连接所述第二光电探测器,另一端通过光纤连接第二相位调制器,所述第二相位调制器通过光纤连接所述第四光电探测器。
其中,所述光接收装置包括第四分光耦合设备、第五分光耦合设备、第一相位调制器、第二相位调制器、第一光电探测器和第二光电探测器,且所述第一光电探测器和第二光电探测器均为双通道光电探测器;
所述第二分光耦合设备通过光纤连接所述第四分光耦合设备,所述第四分光耦合设备的一端通过光纤连接所述第一光电探测器的一个通道,另一端通过光纤连接第一相位调制器,所述第一相位调制器通过光纤连接所述第一光电探测器的另一个通道;
所述第三分光耦合设备通过光纤连接所述第五分光耦合设备,所述第五分光耦合设备的一端通过光纤连接所述第二光电探测器的一个通道,另一端通过光纤连接第二相位调制器,所述第二相位调制器通过光纤连接所述第二光电探测器的另一个通道。
(三)有益效果
本发明具有如下有益效果
1、基于迈克尔逊干涉仪结构,采用了法拉第旋光镜技术,有效地消除了偏振衰落的影响;
2、采用双迈克尔逊光路结构,具有光路结构简单,硬件成本低等优势;
3、通过对扰动信号的预处理消除了在定位计算过程中可能受到的光功率波动和信号偏振诱导衰落等因素引起的干涉信号可见度的变化,从而也间接消除了可见度变化引起的可能的传感器定位失效的问题;
4、在提取出三角函数内的信号后进行了高通滤波,滤除了相位漂移信号,从而消除了相位缓变的影响;
5、通过移相90°,三角变换,相位提取算法,频域谱分析等手段成功地提取出了扰动的位置信息,实现了双迈克尔逊型光路的多点扰动定位功能。


图1是现有的基于双马赫-泽德干涉仪型光纤分布式扰动传感器的光路原理图2是本发明实施例的一种光纤分布式扰动传感器的光路结构图3是本发明实施例的另一种光纤分布式扰动传感器的光路结构图4是本发明实施例的另一种光纤分布式扰动传感器的光路结构图5是基于图2的传感器的多点扰动定位方法流程图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式
作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
如图2所示,为本实施例的光纤分布式扰动传感器的光路结构图,包括光源、光接收装置(第一光电探测器PD1、第二光电探测器PD2)、耦合器C1、第一迈克尔逊干涉仪及第二迈克尔逊干涉仪。两迈克尔逊干涉仪结构相同,第一迈克尔逊干涉仪包括第一法拉第旋光镜FRM1、第二法拉第旋光镜FRM2、光纤延迟环D及耦合器C2,第二迈克尔逊干涉仪包括第三法拉第旋光镜FRM3、第四法拉第旋光镜FRM4及耦合器C3,光源采用激光器Laser, Laser通过光纤连接耦合器C1,耦合器C1分别通过光纤连接第一迈克尔逊干涉仪和第二迈克尔逊干涉仪,第一迈克尔逊干涉仪和第二迈克尔逊干涉仪通过光纤分别连接第一光电探测器PD1和第二光电探测器PD2。具体地,耦合器C2的一侧通过光纤分别连接第一法拉第旋光镜FRM1和第二法拉第旋光镜FRM2,另一侧通过光纤连接耦合器C1,同时还连接第一光电探测器PD1,耦合器C2用于使第一法拉第旋光镜FRM1反射的光信号和第二法拉第旋光镜 FRM2反射的光信号干涉,并将干涉后的信号传输给所述第一光电探测器PD115耦合器C3的一侧通过光纤分别连接第三法拉第旋光镜FRM3和第四法拉第旋光镜FRM4,另一侧通过光纤连接耦合器C1,同时还连接第二光电探测器PD2,耦合器C3用于使第三法拉第旋光镜FRM3反射的光信号和第四法拉第旋光镜FRM4反射的光信号干涉,并将干涉后的信号传输给第二光电探测器PD2。
图2中,激光器Laser发出的光经过耦合器C1分成两束光,并分别注入两个迈克尔逊干涉仪。迈克尔逊干涉仪中的光波分别沿着参考臂和传感臂传播,在光纤的末端遇到法拉第旋光镜(Frm1JRM2JRM3JRM4)发生反射,并最终分别在耦合器C2和C3处发生干涉。 在实际工程应用中,参考臂光纤L2、L4盘起,传感臂光纤Lp L3布置于同一光缆中。光纤延迟环D位于第一迈克尔逊干涉仪的传感臂上,在传感臂上的位置可以位于第一迈克尔逊干涉仪传感臂的首端(即靠近第二分光耦合设备),也可以位于传感臂的末端(即靠近第一法拉第旋光镜),均可以实现定位功能。
实施例2
如图3所示,本实施例中的光纤分布式扰动传感器与实施例2不同的是光接收装置还包括稱合器C4、耦合器C5、第一相位调制器P1、第二相位调制器P2、第三光电探测器PD3 和第四光电探测器PD4。且耦合器C2不直接连接PD1,耦合器C3不直接连接PD2。
耦合器C2通过光纤连接耦合器C4,耦合器C4的一端通过光纤连接第一光电探测器 PD1,另一端通过光纤连接第一相位调制器P1,第一相位调制器P1通过光纤连接所述第三光电探测器PD3;
耦合器C3通过光纤连接耦合器C5,耦合器C5的一端通过光纤连接第二光电探测器 PD2,另一端通过光纤连接第二相位调制器P2,第二相位调制器P2通过光纤连接所述第四光电探测器PD4。
耦合器C4将耦合器C2传送过来的信号分成两个信号,一个通过光纤直接送入第一光电探测器PD1,另一个通过第一相位调制器P1进行移相90°后再送入第三光电探测器PD30
实施例3
如图4所示,本实施例中的光纤分布式扰动传感器与实施例2的结构基本相同,不同的是第一光电探测器PD1和第二光电探测器均为双通道光电探测器,因此不需要第三光电探测器I3D3和第四光电探测器PD4。将耦合器C2出来的光纤接入PD1的一个通道,将卩1 出来的光纤分别接入PD1的另一个通道;将耦合器C3出来的光纤接入的一个通道,将P2 出来的光纤分别接入PA的另一个通道。
上述实施例1、实施例2和实施例3中的耦合器均为2X2耦合器,实现分光和耦合作用,也可以用其他具有分光和耦合作用的器件来代替,如环形器、分束器、半反半透膜寸。
实施例4
本实施例提供了一种基于上述实施例1、实施例2或实施例3的光纤分布式扰动传感器的多点扰动定位方法。该方案多点定位的原理框图如图5所示,以两点同时扰动为例, 当两点扰动f\(t)同时发生时,光纤长度和传播常数会发生变化,从而引起干涉仪中的相位变化。根据光纤传感理论,输出相位信息的变化正比于扰动信号,有
Δ 釣(0 = 5./⑴(6)
^p拟= B.f2{t)(!)
其中,t表示时间,B是与扰动相位对应的比例因子,Δ妁(O和A灼⑴分别是两个扰动引起的相位差变化。
设激光光源发出的光为Ein,先考虑受振后往耦合器方向传播的光。从耦合器C2 输出到PD1的两束干涉光为
权利要求
1.一种多点扰动定位方法,其特征在于,包括以下步骤Sl 分别对接收到的两干涉信号进行隔直操作以去掉两干涉信号中的直流项和低频干扰项,所述两干涉信号中均包括扰动信号;S2:对所述两干涉信号分别进行移相90°的操作,并分别利用移相90°的信号除以原干涉信号,得到相除后的两干涉信号;53从步骤S2之后的两干涉信号中分别提取出三角函数内的相位信息;54对提取后的两干涉信号进行高通滤波操作以滤除相位缓变的干扰信号;S5:对高通滤波后的两干涉信号分别进行三角变换、频谱分析并分类讨论以得到扰动位置。
2.如权利要求1所述的多点扰动定位方法,其特征在于,所述步骤Sl中,隔直操作后还包括步骤分别获取两干涉信号的光强与可见度信息并消除干涉信号可见度变化,并对所述两干涉信号经过放大、滤波调理,以抑制噪声和干扰。
3.如权利要求1所述的多点扰动定位方法,其特征在于,所述步骤S2中采用希尔伯特变换将所述两干涉信号移相90°。
4.如权利要求1所述的多点扰动定位方法,其特征在于,所述步骤S3中采用三角函数相位提取算法或PGC调制算法从两干涉信号中分别提取出三角函数内的相位信息。
5.如权利要求1 4中任一项所述的多点扰动定位方法,其特征在于,所述步骤S5中分类讨论以得到扰动位置的过程具体如下通过经过频谱分析的两干涉信号相位谱的比对寻找多点扰动中不同频率成分分量的频率值,再根据这些频率值对应于经过频谱分析的两干涉信号的幅值谱的商联立方程组, 从而反解出多点扰动的位置信息。
6.一种光纤分布式扰动传感器,其特征在于,包括光源、第一分光耦合设备、光接收装置、第一迈克尔逊干涉仪及第二迈克尔逊干涉仪,所述光源通过光纤连接所述第一分光耦合设备,所述第一分光耦合设备分别通过光纤分别连接所述第一迈克尔逊干涉仪和第二迈克尔逊干涉仪,所述第一迈克尔逊干涉仪和第二迈克尔逊干涉仪通过光纤分别连接光接收装置,所述光接收装置用于接收光源发出的光通过第一迈克尔逊干涉仪和第二迈克尔逊干涉仪后返回的光信号。
7.如权利要求6所述的光纤分布式扰动传感器,其特征在于,所述第一迈克尔逊干涉仪包括光纤延迟环、第一法拉第旋光镜、第二法拉第旋光镜及与所述第一分光耦合设备连接的第二分光耦合设备,所述第二分光耦合设备的一侧通过光纤分别连接第一法拉第旋光镜和第二法拉第旋光镜,另一侧连接所述光接收装置,所述第二分光耦合设备用于使第一法拉第旋光镜反射的光信号和第二法拉第旋光镜反射的光信号干涉,并将干涉后的信号传输给所述光接收装置,光纤延迟环位于所述第一迈克尔逊干涉仪传感臂的光纤上;所述第二迈克尔逊干涉仪包括第三法拉第旋光镜、第四法拉第旋光镜及与所述第一分光耦合设备连接的第三分光耦合设备,所述第三分光耦合设备的一侧通过光纤分别连接第三法拉第旋光镜和第四法拉第旋光镜,另一侧连接所述光接收装置,所述第三分光耦合设备用于使第三法拉第旋光镜反射的光信号和第四法拉第旋光镜反射的光信号干涉,并将干涉后的信号传输给所述光接收装置。
8.如权利要求7所述的光纤分布式扰动传感器,其特征在于,所述光接收装置包括第一光电探测器和第二光电探测器,所述第一光电探测器通过光纤连接所述第二分光耦合设备,所述第二光电探测器通过光纤连接所述第三分光耦合设备。
9.如权利要求7所述的光纤分布式扰动传感器,其特征在于,所述光接收装置包括第四分光耦合设备、第五分光耦合设备、第一相位调制器、第二相位调制器、第一光电探测器、 第二光电探测器、第三光电探测器和第四光电探测器,所述第二分光耦合设备通过光纤连接所述第四分光耦合设备,所述第四分光耦合设备的一端通过光纤连接所述第一光电探测器,另一端通过光纤连接第一相位调制器,所述第一相位调制器通过光纤连接所述第三光电探测器;所述第三分光耦合设备通过光纤连接所述第五分光耦合设备,所述第五分光耦合设备的一端通过光纤连接所述第二光电探测器,另一端通过光纤连接第二相位调制器,所述第二相位调制器通过光纤连接所述第四光电探测器。
10.如权利要求7所述的光纤分布式扰动传感器,其特征在于,所述光接收装置包括 第四分光耦合设备、第五分光耦合设备、第一相位调制器、第二相位调制器、第一光电探测器和第二光电探测器,且所述第一光电探测器和第二光电探测器均为双通道光电探测器;所述第二分光耦合设备通过光纤连接所述第四分光耦合设备,所述第四分光耦合设备的一端通过光纤连接所述第一光电探测器的一个通道,另一端通过光纤连接第一相位调制器,所述第一相位调制器通过光纤连接所述第一光电探测器的另一个通道;所述第三分光耦合设备通过光纤连接所述第五分光耦合设备,所述第五分光耦合设备的一端通过光纤连接所述第二光电探测器的一个通道,另一端通过光纤连接第二相位调制器,所述第二相位调制器通过光纤连接所述第二光电探测器的另一个通道。
全文摘要
本发明公开了一种多点扰动定位方法,包括以下步骤S1分别对接收到的两干涉信号进行隔直操作以去掉两干涉信号中的直流项和低频干扰项,两干涉信号中均包括扰动信号;S2对两干涉信号分别进行移相90°的操作,并分别利用移相90°的信号除以原干涉信号,得到相除后的两干涉信号;S3从步骤S2后的两干涉信号中分别提取三角函数内的相位信息;S4对提取后的两干涉信号进行高通滤波操作以滤除相位缓变的干扰信号;S5对高通滤波后的两干涉信号分别进行三角变换、频谱分析并分析得到扰动位置。还公开了一种光纤分布式扰动传感器。本发明有效地消除了偏振衰落的影响,实现了多点扰动定位功能,且传感器的光路结构简单、稳定性好、硬件成本低。
文档编号G01D5/353GK102538845SQ201110404980
公开日2012年7月4日 申请日期2011年12月8日 优先权日2011年12月8日
发明者李勤, 林文台, 王夏霄, 许文渊, 邬战军, 钟翔 申请人:北京航空航天大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1