用于近和中ir多通道传感器的漫射测量窗口的制作方法

文档序号:6165603阅读:233来源:国知局
用于近和中ir多通道传感器的漫射测量窗口的制作方法
【专利摘要】一种近红外和中红外区中的辐射的漫射反射器,包括:(i)具有反射元件和漫射元件的组件,所述漫射元件由氟化钙、蓝宝石或氧化铝的一个或多个层制成;或者(ii)被配置为具有粗糙表面的金属层的漫反射表面。漫射反射器能够被合并到用于测量薄片材料的性质的系统中并且特别地被合并到包括测量窗口的光学传感器中,所述测量窗口被配置有使来自传感器光源的入射辐射在被传感器接收器检测到之前在材料层内被漫射和反射多次的漫射反射器中的一个或多个。
【专利说明】用于近和中IR多通道传感器的漫射测量窗口
【技术领域】
[0001]本发明总体涉及用于近红外和中红外区中的辐射的漫射反射器。漫射反射器能够被合并到用于测量薄片材料的性质的系统中并特别地被合并到包括测量窗口的光学传感器中,所述测量窗口被配置有使来自传感器光源的入射辐射在被传感器接收器检测到之前在材料层内被漫射和反射多次的漫射反射器中的一个或多个。
【背景技术】
[0002]在薄片材料的制造中,众所周知,各种薄片性质能够被“在线”(即,在薄片制作机器进行操作的同时)检测。在线测量装置测量诸如厚度、基重、含湿量和化学成分等的薄片性质。典型地,这样的在线装置采用在垂直于薄片行进的机器方向的横向上周期性地横越或扫描运动薄片的传感器。
[0003]Howarth的美国专利N0.3,793,524描述了一种用于确定具有辐射漫射和吸收性质的诸如纸之类的材料薄片中的湿气量的红外传感器。IR传感器具有辐射源和从该源偏移的检测器。检测器测量已冲击到材料薄片上的辐射并包括限定运动薄片的路径的一对相对的平面导纸器。每个导纸器具有反射的被阳极化处理的铝反射覆层,该覆层具有充当漫射器的半透明石英或玻璃陶瓷的层。在操作中,导纸器的配置使辐射沿着穿过纸的多个同时的随机路径,以增强传感器的灵敏度。当前的IR传感器采用由被固定至反射表面的石英和特氟龙的层构造的导纸器。不幸的是,合并有这种设计的IR传感器在中IR范围的显著部分上并不准确。

【发明内容】

[0004]现有技术的导纸器或板在大于约2.7微米的波长处具有显著的吸收,这使得难以或不可能测量具有2.7微米以上的红外识别标志的材料。本发明部分地基于透明的且展示出直至5微米或更长的近和中IR能量的朗伯(Lambertian)反射的漫射反射器的开发。
[0005]在一个方面中,本发明针对一种处于近红外和中红外范围内的漫射反射器,其包括:
(i )漫射器组件,包括反射元件和漫射元件,所述漫射元件包括由氟化钙、蓝宝石或氧化招形成的一个或多个层;或者
(ii)漫反射表面,包括具有粗糙表面的金属层。漫射器组件或漫反射表面连同光源一起用作照射的漫射源。当漫射反射器采用金属层时,金属表面将用作反射表面和漫射表面这两者,并且因此,金属层不需要下方的反射表面。例如通过在粗糙表面上涂覆金属层或者通过使平滑的金属层经受表面处理来创建漫反射金属表面。
[0006]在另一方面中,本发明针对一种用于感测材料层的设备,其包括:
被设置在材料层的一个侧面上的辐射源,其将入射辐射的光束导向至材料层中;
辐射接收器,其检测传播通过材料层的反射光束的至少一部分;以及 限定具有针对材料层的路径的测量单元的一个或多个构件,其中每个构件包括面向材料层的侧面的漫射器,并由下述各项组成:(i)至少一个材料层,其包括在镜面的反射表面上形成的氟化钙、蓝宝石和/或氧化铝;或者(ii)漫反射表面,其包括具有粗糙表面的金属层,其中测量单元被配置成使辐射在被辐射接收器检测到之前被反射通过材料层多次。
[0007]在又一方面中,本发明针对一种用于测量在机器方向上运动的薄片产品的物理特性的红外传感器,其包括:
支撑辐射源和辐射接收器的壳体,其中辐射源将入射红外辐射的光束导向至薄片产品中;以及
被设置在辐射源和辐射接收器之间的反射装置,用于将辐射朝向薄片产品反射,以使得辐射在到达辐射检测器之前被反射通过薄片产品多次并且所述辐射在机器方向上传播通过薄片产品,其中反射装置包括漫射器材料,漫射器材料包括:(i)氟化钙、蓝宝石或氧化铝;或者(ii)具有粗糙化表面的金属层。
[0008]漫射反射器特别适合于用在多通道传感器中。由漫射元件生成的朗伯型光散射赋予了许多优点。由于光与(一个或多个)材料层相互作用多次,因此增强了传感器对层内的所选组分的灵敏度。本发明的漫射偏导器不需要石英或特氟龙层。
【专利附图】

【附图说明】
[0009]图1、2、3和4描绘了合并有本发明的漫射反射器组件的红外传感器;
图5和6图示了光接收器;以及
图7示出了在双扫描器中实现传感器的薄片制作系统。
【具体实施方式】
[0010]图1图示了非接触光学传感器2,非接触光学传感器2包括容纳用于测量能够被监测的运动网状物24的质量、特性或特征的传感器部件的罩4和6 (每一个还被称作“扫描器头”或“头”),运动网状物24包括但不限于单层和多层成分、覆层、膜、网状物或薄片。尽管将以测量纸和塑料中的特性来图示传感器,但是应当理解,能够采用传感器来检测许多不同材料(包括例如所涂覆的材料、织品等)中的多种组分。传感器2特别适合于测量在机器方向(MD)上运动的光透射材料层24的厚度或重量。扫描器2包括位于头4中的辐射或光源8以及位于头6中的辐射接收器或检测器10。被固定至头4的操作表面12的上部漫射反射器板组件14包括反射元件16 (诸如镜面反射镜),该反射元件16被覆盖有氟化钙(CaF2)或蓝宝石的层或板18。镜面反射镜的一个实施例由在聚酰亚胺(KAPTON)膜上形成的铝覆层构成。层18的外表面22优选地被抛光以使其更易于清洁并致使其更耐受湿气,而内表面20被高度地粗糙化以用作漫射表面。类似地,被固定至头6的操作表面32的下部漫射反射器板组件34包括反射元件46 (诸如镜面反射镜),该反射元件46被覆盖有氟化钙或蓝宝石的层或板48。层48的外表面42也能够被抛光,而内表面40被高度地粗糙化以用作漫射表面。
[0011]上部和下部扫描器头4、6被对准,以使得上部扫描器头4的平面抛光表面22平行于并面向下部扫描器头6的平面抛光表面42。孔26和36分别提供对光源8和接收器10的入口,并且它们能够被覆盖有诸如氟化钙或蓝宝石之类的窗口材料,窗口材料赋予了机械强度并将板与湿气封隔开。被配置在运动网状物24的相对侧面上的孔26和36未对准,即,如所示出的那样,光源8和接收器10限定了沿运动网状物24的MD路径彼此侧向地偏移的相应辐射轴。以这种方式,上部和下部漫射反射器板14、34的布置限定了网状物材料24所行进经过的测量窗口或单元。在传感器2的操作中,光源8中的透镜聚焦经孔26朝向运动网状物24的入射辐射38,并且透镜被放置以收集经孔36从被抛光表面22反射的辐射28。上部和下部扫描器头4、6在横向上的横越MD的运动被协调为使得由于辐射44在被接收器10检测到之前传播通过材料层24多次而由板组件14、34对光进行漫射和反射。
[0012]对光进行散射或漫射的光漫射元件一般以下述三种方式中的一种起作用:(a)用作利用表面粗糙来在多个方向上散射光的表面光漫射7Π件;(b)用作具有平坦外表面和嵌入的光散射元件的体光漫射元件;或者(C)用作元件(a)和(b)的组合。体漫射器在材料内漫射光。漫射是通过由于光经过具有变化的折射率的材料而散射来实现的。术语“漫射器”或“漫射器构件”意指能够将镜面光(具有主方向的光)漫射成漫射光(具有随机方向的光)的任何材料。术语“光”意指具有处于适合于利用本发明的传感器测量层材料的性质的范围内的波长的电磁辐射。近红外和/或中红外辐射特别适合于测量纸和塑料产品的物理特性。
[0013]氟化钙和蓝宝石对于近红外和中红外辐射来说是透明的。能够通过放电技术、机械研磨或蚀刻来生产随机粗糙化的表面20、40,以创建多个随机定向且间隔开的小面(facet)和腔以便漫反射入射的近红外和中红外福射。
[0014]光源8可以包括例如石英钨卤灯,该石英钨卤灯用于利用具有处于电磁谱的至少第一和第二分离波长区中的波长的辐射来辐照材料24,如本文中进一步描述的那样,第一和第二分尚波长区被称为参考和测量波长带。
[0015]在图1中示出的辐射源8、辐射接收器10的布置中,反射光44在平行于MD的方向上行进以使得传感器2的横向(CD)分辨率被保持。尽管图1中示出的反射辐射44被描绘为在与网状物24相反的机器方向上“向下游”行进,但是该特征对于传感器的功能来说并不关键。换言之,即便网状物24在相反的方向上运动以使得反射辐射相对于网状物“向上游”运动,传感器2仍将操作;关键的特征在于:在反射辐射44朝向接收器10运动时,从光源8发射的入射辐射38沿与运动网状物24的路径平行的路径行进。
[0016]图2图示了非接触光学传感器52,其包括容纳光源58和接收器或检测器60的扫描器头54,用于测量在MD上运动的光透射材料层74的物理品质、特性或特征。被固定至头54的操作表面62的上部漫射反射器板组件64包括反射元件66 (诸如镜面反射镜),该反射元件66被覆盖有由氧化铝(Al2O3)制成的层或板68。类似地,被固定至头56的操作表面82的下部漫射反射器板组件84包括反射元件96 (诸如镜面反射镜),该反射元件96被覆盖有氧化招的层或板98。
[0017]上部和下部扫描器头54、56被对准以使得氧化铝板68的平面表面72平行于并面向氧化铝板98的平面表面92。孔76和86分别提供对光源58和接收器60的入口,并且它们能够被配备有能够在一个侧面上粗糙化或者不粗糙化的窗口材料,诸如氟化钙或蓝宝石。上部和下部漫射反射器板64、84形成网状物材料74所行进经过的测量窗口或单元。在单侧传感器52的操作中,光源58中的透镜聚焦经孔76朝向运动网状物74的入射辐射88,并且透镜被放置以收集经孔86从表面92反射的辐射78。上部和下部扫描器头54、56在横向上的运动被协调以使得由于辐射94在被接收器60检测到之前传播通过材料层74多次而在板组件64、84之间对光进行漫射和反射。对于近红外和中红外辐射来说半透明的氧化铝用作体光漫射元件。氧化铝层典型地在两个侧面上都平滑。
[0018]图3图示了另一单侧非接触光学传感器102,其包括容纳光源108和接收器或检测器110的扫描器头104,用于测量在MD上运动的光透射材料层124的物理品质、特性或特征。被形成在头104的操作表面112上的上部漫射反射器板组件114包括由被涂覆有金属反射覆层的粗糙化操作表面构成的反射元件。可替换地,反射元件由漫反射金属表面构成。类似地,下部漫射反射器板组件134在头106上具有操作表面142,操作表面142具有相同构造的反射元件。能够通过电化学镀、例如由金、银和铝形成适当的金属覆层。
[0019]上部和下部扫描器头104,106被对准以使得上部扫描器头104的表面112平行于并面向下部扫描器头106的表面142。孔126和136分别提供对光源108和接收器110的入口 ;孔能够被可选地配备有在一个侧面上粗操化或者不粗糙化的氟化钙或蓝宝石窗口。上部和下部漫射反射器板114、134限定了网状物材料124所行进经过的测量窗口或单元。在单侧传感器102的操作中,光源108中的透镜聚焦经孔126朝向运动网状物124的入射辐射138,并且透镜被放置以收集经孔136从表面142反射的辐射128。上部和下部扫描器头104、106在横向上的运动被协调以使得由于辐射144在被接收器110检测到之前传播通过材料层124多次而在板组件114和134之间对光进行漫射和反射。在该传感器102中,粗糙化金属覆层(或者漫反射金属表面)用作漫射器和反射元件这两者。
[0020]图4图示了特别适合于测量包括被涂覆在反射层压基板176上的材料层178的网状物174的诸如例如厚度或重量之类的性质的非接触光学传感器152。传感器152包括容纳辐射源158和辐射接收器160的头154。被固定至头154的操作表面162的上部漫射反射器板组件164包括反射元件166 (诸如镜面反射镜),该反射元件166被覆盖有氧化铝层168和被抛光的氟化钙或蓝宝石的层或板170。在该构造中,氧化铝用作漫射材料。
[0021]辐射源158内的透镜聚焦经孔176朝向运动网状物174的入射辐射188,并且透镜被放置以收集经孔186从运动网状物174的反射层压基板176反射的辐射178。利用单侧传感器的该配置,在接收器160检测到光之前,来自光源158的入射光194被反射层压基板176和板组件164漫射和反射多次。如在图4中所示的那样,非接触光学传感器152测量被涂覆在反射层压基板176上的一个或多个材料层174的性质。还显而易见的是,相同的传感器152能够操作以在材料层178被涂覆到反射层压基板176上之前测量材料层178。换言之,只要反射层压基板176处于材料层178之下以反射辐射,传感器152就将操作。
[0022]图4的单侧红外传感器还能够被配置成分析未在反射层压基板上形成的材料层。这容易地通过采用与材料层的下表面相邻地放置的外部反射构件而实现。
[0023]图5图示了包括容纳用于测量材料层中的三种性质的六通道传感器的检测器组件200的适当接收器。在该布置中,存在三个测量滤波器/检测器204A、206A和208A以及三个对应的参考滤波器/检测器204B、206B和208B。在每个检测器之前放置分离的红外带通滤波器;以这种方式,红外检测器中的每一个测量红外光束谱的仅落入关联滤波器的通带内的部分的强度。宽带红外能量源(未示出)将入射辐射导向至要被分析的材料层上,并且通过使光束通过分束器210、212、214和恰当的滤波器至各个检测器来对反射辐射202进行波长分析。显而易见,能够按照需要来合并附加的测量和参考检测器/滤波器对。例如在Howarth 的美国专利 N0.4,957,770,Haran 等的 N0.7,291,856 和 Tixier 等的 7,382,456中描述了适当的光源和关联的检测器装置,通过引用将这些专利合并于此。可替换地,如在图6中所示的那样,接收器包括采用对反射辐射222进行分析的分光计224的检测器组件220。
[0024]图7图示了在图1、2和3中示出的传感器的一个特定实施方式。特别地,辐射源和检测器被容纳在能够被采用以测量纸中的含湿量或聚合物膜的浓度的扫描器系统240的双头扫描器258中。上部扫描器头250跨越在MD上运动的运动薄片246的宽度在⑶中反复地来回运动,以使得可以测量整个薄片的特性。扫描器258由在其上安装有上部和下部扫描头250、252的两个横越梁242、244支撑。下部和上部扫描器头250、252的操作面限定了接纳薄片246的测量窗口或单元。下部扫描器头252可以包括诸如空气轴承稳定器(未示出)之类的薄片稳定系统,以在薄片经过测量单元时将其保持在连贯平面上。关于速度和方向来同步双扫描器头250、252的运动以使得它们被彼此对准。
[0025]一种监测塑料膜的厚度的技术测量形成该膜的(一个或多个)特定聚合物的(一个或多个)浓度(每单位面积的重量,典型地以克每平方米gsm来测量)。多层膜典型地包括层压在一起的多个层。优选地,在多层结构中,相邻的层由不同的聚合物材料形成。通过采用具有不同物理性质的不同聚合物,多层膜可以具有单层膜中不存在的物理属性的组合。例如,多层膜可以是耐受湿气的、耐受磨损的而且还保持柔韧。除了其它以外,本发明的传感器还在下述方面中有效:控制多层膜的生产,以确保膜中的每一层具有合适的厚度或重量(gsm),以使得多层膜具有正确的性质组合。
[0026]如果已知多层膜中特定聚合物组分的密度,则能够确定膜组分的厚度。能够利用计算机来计算厚度。通常,不计算膜厚度,并且对于品质控制而言,组分的重量(gsm)就是用户所需要的全部。
[0027]前面已经描述了本发明的原理、优选实施例和操作模式。然而,本发明不应被理解为局限于所讨论的特定实施例。因此,上面描述的实施例应当被认为是说明性的而不是限制性的,并且应当意识到,本领域技术人员可以在不脱离如后面的权利要求所限定的本发明范围的情况下在这些实施例中作出变型。
【权利要求】
1.一种在近红外和中红外范围内的漫射反射器,包括: (i)漫射器组件(164),包括反射元件(166)和漫射元件(168,170),所述漫射元件(168,170)包括由氟化钙、蓝宝石或氧化铝形成的一个或多个层;或者 (?)漫反射表面(114),包括具有粗糙表面的金属层。
2.根据权利要求1所述的漫射反射器,其中所述漫射元件(168,170)包括氟化钙或蓝宝石并具有与所述反射元件(166)邻接的第一漫射表面。
3.根据权利要求1所述的漫射反射器,其中所述漫射器元件(168,170)包括邻接于所述反射元件(166)的表面的氧化铝。
4.一种用于感测材料层的设备(2,52),包括: 辐射源(8,58),其被设置在所述材料层(24,74)的一个侧面上,将入射辐射(38,88)的光束导向至所述材料层(24,74)中; 辐射接收器(10,60),其检测传播通过所述材料层(24,74)的反射光束(44,94)的至少一部分;以及 限定具有针对所述材料层(24,74)的路径的测量单元的一个或多个构件,其中每个构件包括面向所述材料层( 24,74)的侧面的漫射器(14,64),并由至少一个材料层组成,所述至少一个材料层由(i )被形成在镜面的反射表面(16,66)上的氟化钙、蓝宝石和/或氧化铝(18,68)或者(ii )包括具有粗糙表面的金属层的漫反射表面(114)组成,其中所述测量单元被配置成使辐射在被所述辐射接收器(10,60)检测到之前被反射通过所述材料层(24,74)多次。
5.根据权利要求4所述的设备,包括单个构件(164),并且其中材料层(178)被形成在反射基板(176)的薄片上,所述反射基板(176)被放置成面向所述单个构件(164),并且其中所述单个构件(164)和所述反射基板(170)限定针对材料层(174)的路径和测量单元。
6.根据权利要求5所述的设备,包括限定针对所述材料层(24,74)的测量单元的构件对(14,34,64,84),其中所述辐射源(8,58)和所述辐射接收器(10,60)具有关于所述路径彼此侧向地偏移的相应辐射轴和检测。
7.根据权利要求6所述的设备,其中所述构件对(14,34)包括具有第一板(18)的第一构件(14)和包括第二板(48)的第二构件(34),其中所述第一和第二板(18,48)基本上平行,并且所述板被放置在相对的侧面上并基本上平行于所述材料层(24),其中所述第一板(18)具有被耦合至所述辐射源(8)的第一孔(26),并且其中所述第二板(48)具有被耦合至所述辐射接收器(10)的第二孔(36)。
8.根据权利要求6所述的设备,其中所述构件对(64,84)包括具有第一板(68)的第一构件(64)和包括第二板(98)的第二构件(84),其中所述第一板(68)和所述第二板(98)基本上平行,并且所述板被放置在相对的侧面上并基本上平行于所述材料层(74),其中所述第一板(68 )具有被耦合至所述辐射源(58 )的第一孔(76 ),并且其中所述第一板(68 )具有被耦合至所述辐射接收器(60)的第二孔(86)。
9.一种用于测量在机器方向上运动的薄片产品(24,74)的物理特性的红外传感器(2,52),包括: 支撑辐射源(8,58)和辐射接收器(10,60)的壳体(4,6,54,56),其中所述辐射源(8,58)将入射红外辐射的光束(38,88)导向至所述薄片产品(24,74)中;以及被设置在所述辐射源(8,58)和所述辐射接收器(10,60)之间的反射装置(14,34,64,84),用于将辐射朝向所述薄片产品(24,74)反射,以使得辐射在到达所述辐射接收器(10,60)之前被反射通过所述薄片产品(24,74)多次并且所述辐射在机器方向上传播通过所述薄片产品(24,74),其中所述反射装置包括漫射器材料(18,48,68,98),所述漫射器材料(18,48,68,98)包括(i)氟化钙、蓝宝石或氧化铝或者(ii)具有粗糙化表面的金属层(114)。
10.根据权利要求9所述的红外传感器,其中所述壳体(4,6, 54, 56)包括第一扫描器头(4, 54)和第二扫描器头(6, 56),并且其中所述第一和第二扫描器头以同步的方式沿横向运动并限定针对材料层(24,74)的路径,其中所述第一扫描器头(4,54)包括:(i )第一漫射器组件(14,64),其面向所述材料层(24,74)的第一侧面,包括第一反射元件(16,66)和第一漫射元件(18,68),所述第一漫射元件(18,68)包括由氟化钙、蓝宝石或氧化铝形成的一个或多个层;或者(ii)第一漫反射表面(114),其面向所述材料层(24,74)的第一侧面,包括具有粗糙表面的金属层,以及其中所述第二扫描器头(6,56)包括:(i)第二漫射器组件(34,84),其面向所述材料层(24,74)的第二侧面,包括第二反射元件(46,96)和第二漫射元件(48,98),所述第二漫射元件(48,98)包括由氟化钙、蓝宝石或氧化铝形成的一个或多个层;或者(ii)第二漫反射表面(114),其面向所述材料层(24,74)的第二侧面,包括具有粗糙表面的金属层。
【文档编号】G01N21/86GK103620384SQ201280027351
【公开日】2014年3月5日 申请日期:2012年6月4日 优先权日:2011年6月6日
【发明者】A.克罗拉克, S.蒂克西尔 申请人:霍尼韦尔阿斯卡公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1