一种基于液晶f-p腔可调滤波技术的光纤光栅解调系统的制作方法

文档序号:6207660阅读:129来源:国知局
一种基于液晶f-p腔可调滤波技术的光纤光栅解调系统的制作方法
【专利摘要】本实用新型公开了一种基于液晶F-P腔可调滤波技术的光纤光栅解调系统,采用基于液晶F-P腔可调滤波器技术,可以提高波长解调性能、降低成本,同时环形器结构降低整个系统IL,提高解调探测功率,使用光隔离器ISO提高光源性能,降低回波干扰,提高整个解调器性能,增强系统可靠性,同时多通道阵列环形器及阵列探测器mini-PD结构实现高效多通道阵列光纤光栅解调功能,实用型强、性能优越、成本低、可靠性高,易于批量生产。
【专利说明】—种基于液晶F-P腔可调滤波技术的光纤光栅解调系统
【技术领域】
[0001]本实用新型属于光纤传感【技术领域】,涉及到多通道集成式高精度光纤光栅波长解调系统,特别适用于低成本、高性能、高集成度及多通道密集传感系统的波长解调与应用。
【背景技术】
[0002]当光纤光栅所处环境物理量发生变化,将导致光栅纤芯折射率发生变化,即光栅的周期发生变化,从而使反射光的波长发生变化,通过解调波长的变化量,就可以测量待测物体的物理量的变化情况,因此光纤光栅可以用于温度、应变及应力等物理量的传感测量。
[0003]随着光纤光栅的早期大量应用于材料工业、化学医药、水利水电、电力、船舶、煤矿等领域,目前还在建筑、桥梁、水坝、管线、隧道、高速公路、机场跑道、地铁及铁路等领域大量应用。因此对传统的光纤光栅解调器,提出了更高要求,主要有三个方面:一是要求光纤光栅解调器具有高灵敏度、高分别率;二是开发体积小、多通道密集、集成度高的解调器;三是要求成本低廉、可靠性高。
[0004]目前多通道光纤光栅传感解调器主要采用基于MEMSF-P腔可调滤波器技术方案,角度可调滤光片型可调滤波器技术方案;MEMS F-P腔滤波采用的是压电陶瓷技术,此技术对工艺要求高,因此成品率不高,价格昂贵;而角度可调滤光片型可调滤波器技术,通常采用电机驱动方案,而电机的最大缺点是其控制时间慢,使用寿命有限制,同时体积也较大,因此这几个方面限制其大量应用。而随着液晶电视技术的成熟及大批量应用,液晶技术逐渐应用于光通信及光纤传感领域,像国外CoAdna Photonics其LC-based WSS (波长选择开关)技术大批量用于DWDM系统和ROADM(可重构光分插复用器)系统,同时LCOS (LiquidCrystal on Silicon)硅基液晶技术大量用于投影、电视、光通信及光纤传感领域;因此基于液晶技术的光可变衰减器(VOA),液晶F-P可调滤波器得到大量应用,成本相对于传统MEMS及角度可调滤光片有显著的降低,由于成本低廉,同时通过温度控制技术,提高液晶的响应时间及温度特性,使其在光通信及光纤传感领域得到大量应用。
实用新型内容
[0005]本实用新型提出了一种基于液晶F-P腔可调谐滤波技术的光纤光栅解调系统,能提高光纤传感系统整体性能指标,降低系统成本,提高产品的可靠性,体积小,高集成度及多通道密集传感系统的波长解调与应用。
[0006]本实用新型所采用的技术方案为:
[0007]—种基于液晶F-P腔可调滤波技术的光纤光栅解调系统,包括ASE宽带光源
(I)、光隔离器IS0(2)、液晶F-P腔可调滤波器LC-T0F(3)、1*2耦合器(4)、校准波长(5)、min1-PD探测器(6)、TEC温度控制器(7)、I*N耦合器(8)、环形器阵列(9)、多通道FBG光纤光栅(10)、min1-ro探测器阵列(11) ;ASE宽带光源(I)连接光隔离器ISO (2),光隔离器ISO (2)连接液晶F-P腔可调滤波器LC-TOF (3),液晶F-P腔可调滤波器LC-TOF (3)连接1*2耦合器(4),1*2耦合器(4) 一路连接单通道校准波长(5),后经过光电min1-H)探测器(6)转换为窄带校准电信号,另一路连接1*N路耦合器(8),i*N路耦合器(8)连接环形器阵列
(9)的I端口,环形器阵列(9)的2端口连接多通道FBG光纤光栅(10)传感器阵列。
[0008]所述的光纤光栅解调系统,所述液晶F-P腔可调滤波器LC-TOF (3)包括:mini小型化输入准直器、PBSl起偏器、F-P腔液晶盒、PBS2检偏器、mini小型化输出准直器。
[0009]所述的光纤光栅解调系统,所述ASE宽带光源⑴替换为SLED宽带光源(13),所述的环形器阵列(9)替换为1*2耦合器阵列(12)。
[0010]本实用新型提供的可调谐滤波器的优点是体积小、成本低廉、TEC控制良好的温度特性及响应时间特性,通过采用mini小型化准直器降低器件封装尺寸,PBSl起偏器和PBS2检偏器结构解决器件TOL问题,结构紧凑,性能指标优越。
[0011]本实用新型系统所述液晶F-P腔可调谐滤波器采用TEC温度控制的方法,可以提高系统的扫描频率达到ΙΚΗζ-ΙΟΚΗζ级,同时提高系统的高低温特性、可靠性及性能指标。
[0012]本实用新型系统采用环形器阵列结构,I端口 coupler输入,2端口联接FBG光纤光栅,3端口联接pd探测器,因环形器IL插入损耗低,可以降低整个系统插入损耗(IL),提高解调光功率水平。
[0013]本实用新型系统采用min1-H)探测器阵列结构,通过光路结构与电路结构并行控制方式,可以实现快速多通道测量,min1-pd阵列结构可以大大降低系统体积,提高系统集成度。
[0014]本实用新型系统所述采用ASE宽带光源与光隔离器ISO联接的方法,可以大大提高光源指标性能,降低后述联接光路结构的回波干扰(RL),提升光源的稳定性及寿命。
[0015]本实用新型系统采用SLED宽带光源与光隔离器ISO联接的方法,可以大大提高光源指标性能,降低后述联接光路结构的回波干扰(RL),提升光源的稳定性及寿命。
[0016]本实用新型系统采用一个固定的校准波长来校准液晶可调滤波器的波长偏移量的方法,可以实时校准液晶可调滤波器的起始波长,从而准确解调实际光纤光栅波长的偏移量。
[0017]本实用新型系统的优点有:
[0018]1.采用基于液晶F-P腔可调谐滤波器技术作为扫描滤波器,成本低廉,液晶F-P腔可调滤波器结构简单;
[0019]2.通过TEC温度控制方法,提高液晶响应及解调时间,在ΙΚΗζ-ΙΟΚΗζ级;
[0020]3.液晶F-P腔可调滤波器通过小型化偏振耦合封装,解决体积小,偏振相关问题(PDL);
[0021]4.ASE或SLED宽带光源与光隔离器ISO联接的方法,降低后述联接光路结构的回波干扰(RL),提升光源的稳定性及寿命;
[0022]5.因环形器IL插入损耗低,可以降低整个系统插入损耗(IL),提高解调光功率水平;
[0023]6.采用min1-PD探测器阵列结构,通过光路结构与电路结构并行控制方式,可以实现快速多通道测量,min1-pd阵列结构可以大大降低系统体积,提高系统集成度;
【专利附图】

【附图说明】
[0024]图1实施例一中的基于液晶F-P腔可调滤波技术的光纤光栅解调器系统:ASE宽带光源、环形器阵列结构加min1-PD探测器阵列解调方案;
[0025]图2实施例二中的基于液晶F-P腔可调滤波技术的光纤光栅解调器系统:ASE宽带光源、l*2Coupler稱合器加min1-PD探测器阵列解调方案;
[0026]图3实施例三中的基于液晶F-P腔可调滤波技术的光纤光栅解调系统:SLED光源、环形器阵列结构加min1-PD探测器阵列解调方案;
[0027]图4实施例四中的基于液晶F-P腔可调滤波技术的光纤光栅解调系统:SLED光源、1*2环形Coupler稱合器加min1-PD探测器阵列解调方案;
[0028]图5为本实用新型液晶F-P腔可调滤波器结构;
【具体实施方式】
[0029]以下结合具体实施例,对本实用新型进行详细说明。
[0030]实施例一:
[0031]参考图1,基于液晶F-P腔可调滤波技术的光纤光栅解调系统,包括ASE宽带光源1、光隔离器IS02、液晶F-P腔可调滤波器LC-T0F3、1*2耦合器4、校准波长5、mini_PD探测器6、TEC温度控制器7、1*N耦合器8、环形器阵列9、多通道FBG光纤光栅10、mini_PD探测器阵列11。ASE宽带光源I出射的宽带光源经过光隔离器IS02隔离然后进入液晶F-P腔可调滤波器LC-T0F3后 形成中心波长可变的窄带光源,经过1*2耦合器4分光后,一路进入单通道校准波长5,后经过光电min1-PD探测器6转换为窄带校准电信号,另一路经过1*N路耦合器8后经环形器阵列9的I端口入,2端口出射进入多通道FBG光纤光栅10传感器阵列,由多通道FB6光纤光栅10反射回的待测物理信息(包括应力、温度等)的反射信号经与经环形器阵列9的3端口反射输出,经过min1-PD探测器阵列11光电信号处理后,转换成待测的窄带电信号;当改变电压扫描控制液晶F-P腔可调滤波器LC-T0F3的腔长,实现滤波器的波长从短到长波的周期性变化时,利用已标定的电压与波长关系,可以通过解调出的电信号得到被测FBG光纤光栅波长的变化,以最终精确测试出待测物理量变化的信息,TEC控制器7精确控制液晶F-P腔可调滤波器LC-T0F3的温度,以提高其波长稳定性和响应时间,通过单通道校准波长起到每次电压扫描控制时,实时校准液晶F-P腔的起始波长变化,以准确实时修正每次测量因液晶F-P腔受外界环境及自身影响的误差。
[0032]本实用新型系统所述液晶F-P腔可调滤波器LC-T0F3包括:mini小型化输入准直器、PBSl起偏器、F-P腔液晶盒、PBS2检偏器、mini小型化输出准直器。
[0033]液晶F-P腔可调滤波器的基本工作原理基于液晶的电控双折射效应,液晶作为一种凝聚态物质,其特性与结构介于固态晶体与各向同性液体之间,具有晶体的各向异性,能如晶体一样发生双折射,布拉格反射、衍射及旋光效应,也能在外电场作用下产生热光、电光或磁光效应。当对液晶施加电场时将改变液晶分子的排列方向,一定偏振方向的入射光将在晶体中发生双折射现象(电控双折射效应),使ο光与e光的折射率发生变化,从而改变ο光与e光的折射率差。
[0034]Δη = n0-ne(I)
[0035]
Αφ = 2πΑη? / λ⑵
[0036]Λ η:为液晶电控双折射效应后产生的折射率差[0037]Αφ:为液晶电控双折射效应后产生的相位差
[0038]正是由于液晶的电控双折射效应,使O光与e光的相位差被电压调制,所以可用液晶、波片、偏振分束器构成新型的液晶F-P腔可调谐滤波器,具体结构如图5所示,PBSl作为起偏器,PBS2则为检偏器,液晶片与波片组成液晶F-P腔液晶盒,即产线滤波的旋光装置,通过电压控制液晶片两端电压,使ο光与e光的折射率发生变化,即(I)式中折射率随电压信号发生变化,从而(2)中的输入光信号相位发生变化,即被调制,通过改变特殊的电压值,实现波长从短波向长波周期性的变化,从而实现液晶F-P腔可调滤波器LC-TOF的滤波功能。mini小型化输入、输出准直器配合小型化PBS起偏和检偏器以及小型化液晶F-P腔盒,可以很容易实现LC-TOF的小型化;TEC温度控制器,确保LC-TOF在恶劣的高低温环境下保持优良的波长稳定性及快速的响应特性。
[0039]本实用新型实施主要创新的方法在于采用基于液晶F-P腔可调滤波器技术,可以提高波长解调性能、降低成本,同时环形器结构降低整个系统IL,提高解调探测功率,使用光隔离器ISO提高光源性能,降低回波干扰,提高整个解调器性能,增强系统可靠性,同时多通道阵列环形器及阵列探测器min1-PD结构实现高效多通道阵列光纤光栅解调功能,实用型强、性能优越、成本低、可靠性高,易于批量生产。
[0040]实施例二:
[0041]参考图2,基于液晶F-P腔可调滤波技术的光纤光栅解调系统,包括ASE宽带光源1、光隔离器IS02、液晶F-P腔可调滤波器LC-T0F3、1*2耦合器4、校准波长5、mini_PD探测器6、TEC控制器7、1*N耦合器8、1*2耦合器阵列12、多通道FBG光纤光栅10、mini_PD探测器阵列11。
[0042]ASE宽光源I出射的宽带光源经过光隔离器IS02隔离然后进入液晶F-P腔可调滤波器LC-T0F3后形成中心波长可变的窄带光源,经过1*2耦合器4分光一路进入单通道校准波长5,后经过光电min1-PD探测器6转换为窄带校准电信号,另一路经过I*N路耦合器8后经1*2耦合器阵列12的2端口入,I端口(耦合器公共端)出射进入多通道FBG光纤光栅10传感器阵列,由多通道FBG光纤光栅10反射回的待测物理信息(包括应力、温度等)的反射信号经与经1*2耦合器阵列9的3端口反射输出,经过min1-H)探测器阵列11光电信号处理后,转换成待测的窄带电信号;当改变电压扫描控制液晶F-P腔可调滤波器LC-T0F3的腔长,实现滤波器的波长从短到长波的周期性变化时,利用已标定的电压与波长关系,可以通过解调出的电信号得到被测FBG光纤光栅波长的变化,以最终精确测试出待测物理量变化的信息,TEC控制器7精确控制液晶F-P腔可调滤波器LC-T0F3的温度,以提高其波长稳定性和响应时间,通过单通道校准波长起到每次电压扫描控制时,实时校准液晶F-P腔的起始波长变化,以准确实时修正每次测量因液晶F-P腔受外界环境及自身影响的误差。
[0043]本实用新型实施例二除具备实施例一的创新方法外,主要创新点还在于采用多通道1*2耦合器阵列结构取代环形器阵列结构,对插入损耗IL要求不高及功率探测灵敏度较高解调系统可以大大降低产品成本,适合于大批量生产。
[0044]实施例三:
[0045]参考图3,基于液晶F-P腔可调滤波技术的光纤光栅解调系统,包括SLED宽带光源13、光隔离器IS02、液晶F-P腔可调滤波器LC-T0F3、1*2耦合器4、校准波长5、min1-PD探测器6、TEC控制器7、1*N耦合器8、环形器阵列9、多通道FBG光纤光栅10、mini_PD探测器阵列11。
[0046]本实用新型实施例的工作原理为:SLED宽光源13出射的宽带光源经过光隔离器IS02隔离然后进入液晶F-P腔可调滤波器LC-T0F3后形成中心波长可变的窄带光源,经过1*2耦合器4分光一路进入单通道校准波长5,后经过光电min1-PD探测器6转换为窄带校准电信号,另一路经过1*N路耦合器8后经环形器阵列9的I端口入,2端口出射进入多通道FBG光纤光栅10传感器阵列,由FBG光纤光栅10反射回的待测物理信息(包括应力、温度等)的反射信号经与经环形器阵列9的3端口反射输出,经过min1-PD探测器阵列11光电信号处理后,转换成待测的窄带电信号;当改变电压扫描控制液晶F-P腔可调滤波器LC-T0F3的腔长,实现滤波器的波长从短到长波的周期性变化时,利用已标定的电压与波长关系,可以通过解调出的电信号得到被测FBG光纤光栅波长的变化,以最终精确测试出待测物理量变化的信息,TEC控制器7精确控制液晶F-P腔可调滤波器LC-T0F3的温度,以提高其波长稳定性和响应时间,通过单通道校准波长起到每次电压扫描控制时,实时校准液晶F-P腔的起始波长变化,以准确实时修正每次测量因液晶F-P腔受外界环境及自身影响的误差。
[0047]本实用新型实施例三除具备实施例一的创新方法外,主要创新点还在于宽带光源采用SLED光源,SLED体积小,集成度高,对于总功率要求不高及功率探测灵敏度较高的解调系统可以大大提高集成度、降低产品成本,适合于大批量生产。
[0048]实施例四:
[0049]参考图4,基于液晶F-P腔可调滤波技术的光纤光栅解调系统,包括SLED宽带光源13、光隔离器IS02、液晶F-P腔可调滤波器LC-T0F3、1*2耦合器4、校准波长5、min1-PD探测器6、TEC控制器7、1*N耦合器8、1*2耦合器阵列12、多通道FBG光纤光栅10、min1-PD探测器阵列11。
[0050]本实用新型实施例的工作原理为:SLED宽光源I出射的宽带光源经过光隔离器IS02隔离然后进入液晶F-P腔可调滤波器LC-T0F3后形成中心波长可变的窄带光源,经过1*2耦合器4分光一路进入单通道校准波长5,后经过光电min1-PD探测器6转换为窄带校准电信号,另一路经过i*N路耦合器8后经1*2耦合器阵列12的2端口入,I端口(耦合器公共端)出射进入多通道FBG光纤光栅10传感器阵列,由多通道FBG光纤光栅10反射回的待测物理信息(包括应力、温度等)的反射信号经与经1*2耦合器阵列12的3端口反射输出,经过min1-H)探测器阵列11光电信号处理后,转换成待测的窄带电信号;当改变电压扫描控制液晶F-P腔可调滤波器LC-T0F3的腔长,实现滤波器的波长从短到长波的周期性变化时,利用已标定的电压与波长关系,可以通过解调出的电信号得到被测FBG光纤光栅波长的变化,以最终精确测试出待测物理量变化的信息,TEC温度控制器7精确控制液晶F-P腔可调滤波器LC-T0F3的温度,以提高其波长稳定性和响应时间,通过单通道校准波长起到每次电压扫描控制时,实时校准液晶F-P腔的起始波长变化,以准确实时修正每次测量因液晶F-P腔受外界环境及自身影响的误差。
[0051]本实用新型实施例四除具备实施例一的创新方法外,主要创新点还在于宽带光源采用SLED光源,SLED体积小,集成度高,同时采用多通道1*2耦合器阵列结构取代环形器阵列结构,在总功率要求不高及功率探测灵敏度较高解调系统中可以大大降低产品成本,适合于大批量生产。
[0052]应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本实用新型所附权利要求的保护范围。
【权利要求】
1.一种基于液晶F-P腔可调滤波技术的光纤光栅解调系统,其特征在于,包括ASE宽带光源(I)、光隔离器IS0(2)、液晶F-P腔可调滤波器LC-T0F(3)、1*2耦合器(4)、校准波长(5)、min1-ro探测器(6)、TEC温度控制器(7)、1*N耦合器(8)、环形器阵列(9)、多通道FBG光纤光栅(10)、min1-PD探测器阵列(11) ;ASE宽带光源(I)连接光隔离器ISO (2),光隔离器ISO (2)连接液晶F-P腔可调滤波器LC-TOF (3),液晶F-P腔可调滤波器LC-TOF (3)连接1*2耦合器(4),1*2耦合器(4) 一路连接单通道校准波长(5),后经过光电min1-PD探测器(6)转换为窄带校准电信号,另一路连接1*N路耦合器(8),1*N路耦合器(8)连接环形器阵列(9)的I端口,环形器阵列(9)的2端口连接多通道FBG光纤光栅(10)传感器阵列。
2.根据权利要求1所述的光纤光栅解调系统,其特征在于,所述液晶F-P腔可调滤波器LC-TOF (3)包括:mini小型化输入准直器、PBSl起偏器、F-P腔液晶盒、PBS2检偏器、mini小型化输出准直器。
3.根据权利要求1所述的光纤光栅解调系统,其特征在于,所述ASE宽带光源(I)替换为SLED宽带光源(13),所述的环形器阵列(9)替换为1*2耦合器阵列(12)。
【文档编号】G01D5/353GK203615950SQ201320765559
【公开日】2014年5月28日 申请日期:2013年11月29日 优先权日:2013年11月29日
【发明者】丁善婷, 聂磊, 王妍, 翟中生, 华中平 申请人:湖北工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1