一种基于介电谱的土壤原位养分速测方法与流程

文档序号:12452122阅读:282来源:国知局
一种基于介电谱的土壤原位养分速测方法与流程
本发明涉及一种土壤养分传感器的标定技术,具体的说是一种基于介电谱的土壤原位养分速测方法。
背景技术
:土壤养分速测的目的,是测定土壤中对植物有效的养分含量,作为施肥的参考。传统的通过提取田间土样进行养分监测的方法,虽然结果和精确度都很准确,但是,它所测得的数字只能代表土壤在取样时的养分含量,既不能指示以后在作物生长季节中,土壤养分含量的变化,也不能指出各种植物能吸收多少养分。因为作物吸收养分的数量,是由作物根系的大小和生长的强弱来决定的,而气候条件、耕作管理等其它环境条件,也会对土壤中养分的聚集和分布造成很大的影响。其中各种有效态养分离子,尤其受到土壤水分含量、温度和其他杂离子如有机质、粘粒含量等的影响,只有针对特地土壤发生学分类、特定区域种植制度和气候条件下的养分原位测量,才能找出各养分含量和作物产量的相互关系。对于指导种植生产、面源污染防治,具有重要的意义。养分原位快速测量的范围,包括水含量、总盐含量、酸碱度、温度和有效态氮磷钾含量;目前,针对土壤原位养分快速测量的传感器产品还未见报道。技术实现要素:针对现有技术中对土壤原位养分快速测量的缺失,本发明要解决的技术问题是提供一种基于介电谱的土壤原位养分速测方法。为解决上述技术问题,本发明采用的技术方案是:本发明一种基于介电谱的土壤原位养分速测方法,包括以下步骤:对用多频谱养分传感器各频段对供试土壤样柱的空气值、水值、干土壤值和饱和土壤值进行测定,做为原始基础数据;用供试土壤样柱模拟滴灌进行水肥一体化灌溉,直至样柱土壤饱和;待水盐运移24小时后,根据原始基础数据通过以下公式计算得到含水量原始值和各频段VSIC(a~d)值:VSICa=[(ADaLa*3-ADaH1-ADdsH1-ADdsLa)-(ADsLa*3-ADsH1-ADssH1-ADssLa)]/[(ADaLa*3-ADaH1-ADdsH1-ADdsLa)-(ADwLa*3-ADwH1-ADssH1-ADssLa)])]*10000其中,VSICa为a频段的体积盐离子含量(VolumeSaltIonContent),ADaH1为1频段空气中设备AD模数,ADwH1为1频段水中设备AD模数,ADaLa为a频段空气中设备AD模数,ADwLa为a频段水中设备AD模数,ADdsH1为1频段干土中设备AD模数,ADssH1为1频段饱和土壤中设备AD模数,ADdsLa为a频段干土中设备AD模数,ADssLa为a频段饱和土壤中设备AD模数,ADsH1为1频段土壤中设备AD模数,ADsLa为a频段土壤中设备AD模数;各频段的VSIC值与各频段调节电容的比值即为调容盐基输出比,其公式为:γ=VSIC/C;计算各频段的调容盐基输出比,即γa=VSICa/Ca;对样柱的第一层进行土壤样品采集,并测量土壤含水量值、ECe值、温度值和各有效态氮磷钾含量;当含水量下降5%左右时,重复上述步骤得到下一土层的含水量原始值和各频段VSIC值,并采集该层土壤样品,测定土壤含水量值、ECe值、温度值和各有效态氮磷钾含量;根据所有土层含水量原始值和各频段VSIC值、测定含水量值和ECe值、温度值和各有效态氮磷钾含量进行数据处理,分别制作土壤含水量标定曲线和土壤养分标定曲线,完成一次测定过程。本发明还包括以下步骤:对于不同土壤在测试前需要对多频谱养分传感器进行标定,过程如下:通过多频谱养分传感器提供0至27MHz持续增加频率的交变电场,使离子的振荡“距离”逐渐由大变小,直至100MHz以上离子振荡距离接近于0;依据作物根系养分吸收生物过程,土壤内养分离子运动规律及物理电场相关理论,运用调容和分频技术手段,“扣背景”排除“杂离子”影响因素,实现土壤空隙水溶液养分离子识别与测量;通过1~2个生长季的扫测、估算的种植试验,将结果与实验室测量的结果进行吻合分析;通过实验样本分析,建立介电常数和土壤养分多个参数之间的联系,并计算营养盐的种类和含量;建立PLS数据分析方法、线性回归模型、BP人工神经网络模型进行系统辨识分析,进行农田营养盐量化分析和土壤中多种养分含量的监测;依赖不同频率下的测试结果,建立现场数据模型,完成多频谱养分传感器的标定,实现在同一传感器上水、总盐、温度和有效态氮磷钾养分离子、pH值的原位同测。所述扣背景为:把要测量的养分离子视为主离子,其他离子均为杂离子,只有排除其他杂离子的影响,才能测量出主离子;扣背景的过程就是排除杂离子影响的过程。所述土壤样柱为1~16层。本发明具有以下有益效果及优点:1.本发明方法实现了水含量、总盐含量、酸碱度、温度和有效态氮磷钾含量同测,在灌溉及施肥操作的同时可对操作的有效性进行动态监测,并根据监测结果进行管理,测量精度高,可对不同质地土壤中单一盐份离子含量进行动态监测,安装简单,不扰动土壤,通用性强。2.应用本发明装置布线简单,电缆长度限制少,更省电,可连续原位测定,无辐射,不需要太多的专业知识分析波形,可操作性强。3.本发明方法打破了国际土壤水盐原位同测的技术壁垒,完成了原位养分测量中先测水,再测总盐,最后测养分三步走。附图说明图1为本发明方法技术原理示意图;图2为本发明方法涉及的非接触水盐传感器结构示意图;图3为本发明方法涉及的非接触水盐传感器电气结构框图;图4为本发明方法涉及的土壤质地分类图;图5为本发明方法涉及的土壤含水量标定曲线图;图6为本发明方法涉及的土壤总盐分标定曲线图;图7为本发明方法涉及的土壤有效态氮标定曲线图;图8为本发明方法涉及的土壤有效态磷标定曲线图;图9为本发明方法涉及的土壤有效态钾标定曲线图;图10为本发明方法涉及的pH值标定曲线图。具体实施方式下面结合说明书附图对本发明作进一步阐述。本发明一种基于介电谱的土壤养分原位速测方法,其涉及原理及关键步骤如图1所示:对用多频谱养分传感器各频段对供试土壤样柱的空气值、水值、干土壤值和饱和土壤值进行测定,做为原始基础数据;用供试土壤样柱模拟滴灌进行水肥一体化灌溉,直至样柱土壤饱和;待水盐运移24小时后,根据原始基础数据通过以下公式计算得到含水量原始值和各频段VSIC(a~d)值:VSICa=[(ADaLa*3-ADaH1-ADdsH1-ADdsLa)-(ADsLa*3-ADsH1-ADssH1-ADssLa)]/[(ADaLa*3-ADaH1-ADdsH1-ADdsLa)-(ADwLa*3-ADwH1-ADssH1-ADssLa)])]*10000其中,VSICa为a频段的体积盐离子含量(VolumeSaltIonContent),ADaH1为1频段空气中设备AD模数,ADwH1为1频段水中设备AD模数,ADaLa为a频段空气中设备AD模数,ADwLa为a频段水中设备AD模数,ADdsH1为1频段干土中设备AD模数,ADssH1为1频段饱和土壤中设备AD模数,ADdsLa为a频段干土中设备AD模数,ADssLa为a频段饱和土壤中设备AD模数,ADsH1为1频段土壤中设备AD模数,ADsLa为a频段土壤中设备AD模数;各频段的VSIC值与各频段调节电容的比值即为调容盐基输出比,其公式为:γ=VSIC/C;计算各频段的调容盐基输出比,即γa=VSICa/Ca;对样柱的第一层进行土壤样品采集,并测量土壤含水量值、ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+);当含水量下降5%左右时,重复上述步骤得到下一土层的含水量原始值和各频段VSIC值,并采集该层土壤样品,测定土壤含水量值、ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+);根据所有土层含水量原始值和各频段VSIC值、测定含水量值和ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+)后,进行数据处理,分别制作土壤含水量标定曲线和土壤养分标定曲线,完成一次测定过程。本发明多频谱养分传感器结构如图2所示,其电气结构框图如图3所示,对于不同土壤在测试前需要对多频谱养分传感器进行标定,过程如下:通过多频谱养分传感器提供0至27MHz持续增加频率的交变电场,使离子的振荡“距离”逐渐由大变小,直至100MHz以上离子振荡距离接近于0;依据作物根系养分吸收生物过程,土壤内养分离子运动规律及物理电场相关理论,运用调容和分频技术手段,“扣背景”排除“杂离子”影响因素,实现土壤空隙水溶液养分离子识别与测量;通过1~2个生长季的扫测、估算的种植试验,将结果与实验室测量的结果进行吻合分析;通过实验样本分析,建立介电常数和土壤养分多个参数之间的联系,并计算营养盐的种类和含量;建立PLS数据分析方法、线性回归模型、BP人工神经网络模型进行系统辨识分析,进行农田营养盐量化分析和土壤中多种养分含量的监测;依赖不同频率下的测试结果,建立现场数据模型,完成多频谱养分传感器的标定,实现在同一传感器上水、总盐、温度和有效态氮磷钾养分离子、pH值的原位同测。每种土壤在测试前都需要对多频谱养分传感器标定,同一地块使用只标定一次。本发明方法基于土壤介电原理、现代物理介电学研究成果,运用现代传感技术,在同一传感器实现多频谱测量的土壤原位养分测量;其中,试验室以二氧化硅为基质条件下,各养分离子的频率分段范围如下表:用传感器各频段对供试土壤样柱的空气值、水值、干土壤值和饱和土壤值进行测定,做为原始基础数据;用待测土柱模拟滴灌进行水肥一体化灌溉,直至样柱土壤饱和;待水盐运移24小时后,根据原始基础数据通过以下公式计算得到含水量原始值和各频段VSIC(a~d)值:VSICa=[(ADaLa*3-ADaH1-ADdsH1-ADdsLa)-(ADsLa*3-ADsH1-ADssH1-ADssLa)]/[(ADaLa*3-ADaH1-ADdsH1-ADdsLa)-(ADwLa*3-ADwH1-ADssH1-ADssLa)])]*10000其中,VSICa为a频段的体积盐离子含量(VolumeSaltIonContent),ADaH1为1频段空气中设备AD模数,ADwH1为1频段水中设备AD模数,ADaLa为a频段空气中设备AD模数,ADwLa为a频段水中设备AD模数,ADdsH1为1频段干土中设备AD模数,ADssH1为1频段饱和土壤中设备AD模数,ADdsLa为a频段干土中设备AD模数,ADssLa为a频段饱和土壤中设备AD模数,ADsH1为1频段土壤中设备AD模数,ADsLa为a频段土壤中设备AD模数;VSICb、VSICc、VSICd的获得过程同VSICa;各频段的VSIC值与各频段调节电容的比值,命名为调容盐基输出比,其公式为:γ=VSIC/C,计算各频段的调容盐基输出比,即γa=VSICa/Ca,γb、γc、γd计算方法同γa;对样柱的第一层进行土壤样品采集,并测量土壤含水量值、ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+);当含水量下降5%左右时,重复上述步骤得到下一土层的含水量原始值和各频段VSIC值,并采集该层土壤样品,测定土壤含水量值、ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+);得到所有土层含水量原始值和各频段VSIC值、测定含水量值和ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+)后,进行数据处理,分别制作土壤含水量标定曲线和土壤养分标定曲线,完成一次测定过程。土壤样柱的截取过程如下:据土壤质地分类图(如图4所示),田间采集十二种不同质地的土壤样柱,将土壤打碎,去除植物根系、落叶等杂物,过筛,结合土壤现有含水量及样柱体积,按照田间实测容重,均匀添加入直径20cm,中间内置一根探测管(即本发明非接触水盐传感器的外壳)的样柱中,样柱底部有排水孔若干。样柱高度可根据试验数据密度进行自定义,10厘米为一个土层,一般建议在4个土层以上,将土壤逐层压实,制作成标准土壤样柱。根据原始基础数据通过以下公式计算得到含水量原始值和各频段VSIC(a~d)值介绍公式如下(现以a频段测量土壤有效态氮含量为例):VSICa=[(ADaLa*3-ADaH1-ADdsH1-ADdsLa)-(ADsLa*3-ADsH1-ADssH1-ADssLa)]/[(ADaLa*3-ADaH1-ADdsH1-ADdsLa)-(ADwLa*3-ADwH1-ADssH1-ADssLa)])]*10000其中,VSICa为a频段的体积盐离子含量(VolumeSaltIonContent),ADaH1为1频段空气中设备AD模数,ADwH1为1频段水中设备AD模数,ADaLa为a频段空气中设备AD模数,ADwLa为a频段水中设备AD模数,ADdsH1为1频段干土中设备AD模数,ADssH1为1频段饱和土壤中设备AD模数,ADdsLa为a频段干土中设备AD模数,ADssLa为a频段饱和土壤中设备AD模数,ADsH1为1频段土壤中设备AD模数,ADsLa为a频段土壤中设备AD模数;各频段的VSIC值与各频段调节电容的比值,命名为调容盐基输出比,其公式为:γa=VSICa/ΔCa,计算各频段的调容盐基输出比;对样柱的第一层进行土壤样品采集,并测量土壤含水量值、ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+);当含水量下降5%左右时,重复上述步骤得到下一土层的含水量原始值和各频段VSIC值,并采集该层土壤样品,测定土壤含水量值、ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+);得到所有土层含水量原始值和各频段VSIC值、测定含水量值和ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+)后,进行数据处理,分别制作土壤含水量标定曲线和土壤养分标定曲线,完成一次测定过程。实际土壤体积含水量值通过以下公式计算得到:Y1=a1*[(ADaH-ADsH)/(ADaH-ADwH)]b1;其中,a1为土壤质地含水量标定曲线系数,b1为土壤质地含水量标定曲线幂指数;实际土壤ECe值通过以下公式计算得到:Y2=a2*VSIC+b2其中,a2为第一土壤盐离子标定曲线常数,b2为第二土壤盐离子标定曲线常数;实际土壤有效态氮磷钾含量通过以下公式计算得到:Ya=a3*γa+b3;其中,a3为第一土壤有效态氮(NH4+、NO3-)离子标定曲线常数,b2为第二土壤有效态氮(NH4+、NO3-)离子标定曲线常数;Yb=a4*γb+b4;其中,a4为第一土壤有效态钾(K+)离子标定曲线常数,b4为第二土壤有效态钾(K+)离子标定曲线常数;Yc=a5*γc+b5;其中,a5为第一土壤有效态磷(H2PO3-、HPO32-)离子标定曲线常数,b5为第二土壤有效态磷(H2PO3-、HPO32-)离子标定曲线常数;Yd=a6*γd+b6;其中,a6为第一土壤pH值(H+)标定曲线常数,b6为第二土壤pH值(H+)标定曲线常数;以下为本发明的具体试验实例。1.试验材料供试土壤:壤土土壤容重:1.2g/cm3;土壤样品制作:样柱高50厘米(可根据试验数据密度要求进行层次调整,本试验为4层土壤),直径20cm,中间放置探测管(即本发明非接触水盐传感器的外壳)一根,样柱底部有排水孔若干。将土壤打碎,去除植物根系、落叶等杂物,过筛,结合土壤现有含水量及样柱体积,按照1.2g/cm3的容重(为田间实测容重),均匀添加入样柱中,并将土壤压实,制作成标准样品土样。土层高40厘米,每10厘米为一测试土层。共制作12个样柱,每两个样柱为一组处理。设备:管式多频谱土壤养分原位测量传感器,即本发明非接触式多频谱土壤养分原位传感器;试验方案步骤一:先对空气值、水值、干土壤值和饱和土壤值进行测定;ADaH1:高频段空气中设备AD模数,ADwH1:高频段水中设备AD模数,ADaL(2~d):低频段空气中设备AD模数,ADwL(2~d):低频段水中设备AD模数,ADdsH1:高频段干土中设备AD模数,ADssH1:高频段饱和土壤中设备AD模数,ADdsL(2~d):低频段干土中设备AD模数,ADssL(2~d):低频段饱和土壤中设备AD模数,ADsH1:高频段土壤中设备AD模数,ADsL(2~d):低频段土壤中设备AD模数。步骤二:用滴灌系统模拟田间水肥一体化灌溉,直至样柱土壤水分饱和。让水肥自然运移均匀后,进行步骤三,每一组样柱使用灌溉水肥料浓度如下:分组复合肥料浓度组一蒸馏水组二1.462ms/cm组三2.6ms/cm组四3.64ms/cm组五4.92ms/cm组六6.16ms/cm上表中采用的复合肥料也可以用单一肥料离子替代,制作出的曲线即为单一离子的标定曲线。步骤三:待水盐运移24小时后,使用本发明传感器测量第一土层的ADsH1(高频段土壤中设备AD模数)和ADsL(2~d)(各低频段土壤中设备AD模数),并做好记录。步骤四:对样柱第一土层进行土壤样品采集,用烘干法测量土壤含水量数值,并测量并测量土壤含水量值、ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+);步骤五:以后每隔二周左右进行一次下一土层的ADsH1(高频段土壤中设备AD模数)和ADsL(2~d)(各低频段土壤中设备AD模数),并采集土壤样品,用烘干法测量土壤含水量数值,并测量土壤ECe值、温度值和各有效态氮磷钾含量(NH4+、NO3-、H2PO3-、HPO32-、K+),即重复步骤三、四操作。其中的间隔时间需要试验者自行掌握,标准是让样柱中各土层的含水量值拉开差距,从饱和土壤至干土壤都有。步骤六:数据处理,将数据进行整理,分别制作土壤含水量标定曲线和土壤总盐分标定曲线、土壤有效养分标定曲线、土壤pH值标定曲线,如图5~10所示,其中图5为土壤含水量标定曲线图,图6为土壤总盐分标定曲线图,图7为土壤有效态氮标定曲线图,图8为土壤有效态磷标定曲线图,图9为土壤有效态钾标定曲线图,图10为pH值标定曲线图。本发明方法基于土壤介电原理、现代物理介电学研究成果,运用现代传感技术,在同一传感器实现多频谱测量的土壤原位养分测量。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1