一种设计考核高温旋转构件寿命与强度的双判据图方法与流程

文档序号:12783874阅读:231来源:国知局
一种设计考核高温旋转构件寿命与强度的双判据图方法与流程

本发明属于机械结构的强度设计领域,涉及一种设计考核高温旋转构件寿命与强度的双判据图方法,具体来说,涉及一种设计考核高温和交变服役载荷下机械结构的寿命和强度的双判据图方法。所述双判据图方法特别适用于航空发动机、燃气轮机、压缩机等设备中承受高温和交变机械载荷的部件强度设计和安全性分析。



背景技术:

为符合节能降耗、高效环保的原则,电力、炼化、冶金以及航空等领域的设备呈现出更高温度、更大压力、更长服役时间的发展趋势。如超超临界电站单机组的功率已达1000MW以上,工作参数600-650℃/32-35MPa,设计寿命达30年;先进航空发动机涡轮前进口温度高达1980-2080℃,推重比达到15-20以上,最长寿命超过4万小时;目前致力发展的700℃火电、第4代核电技术也均是基于高温高压参数和长设计寿命。高温旋转构件在服役条件下,由于转速较高,离心力引起的平均应力较高,而构件的自重使旋转过程中产生交变应力。交变应力相对于平均应力较小,因此此类高温旋转构件的突出问题,是出现高平均应力下的高温高周疲劳问题。另外,由于设备的服役温度较高,在高温下,设备也面临着蠕变问题。

现有的高温旋转构件高周疲劳设计主要基于Goodman理论进行,包括获取工况和材料参数对高温旋转构件进行受力分析、利用Goodman公式进行高周疲劳损伤和寿命的计算,最后进行高温旋转构件的高周疲劳强度考核。然而,Goodman曲线的横坐标截止点是材料的抗拉强度,而高温下材料出现蠕变问题,其在高温下的适用性有待商榷。同时,已有研究表明,Goodman曲线处理平均应力对疲劳性能影响的方法偏于保守,不能充分利用材料的潜能,需要提出新的能更好地兼顾安全与经济性的设计方法。

中国专利申请CN201510586289.4“一种材料的蠕变-疲劳寿命预测方法”、CN201410140477.X“一种高温多轴谱载下低周蠕变-疲劳寿命评估方法”、CN201310738774.X“一种基于寿命的高温压力容器蠕变疲劳强度设计方法”以及中国专利申请CN201310272042.6“一种大功率柴油机铝合金活塞的蠕变-疲劳寿命预测方法”,日本专利JP2006044364“damage evaluation method by metal texture as to creep fatigue damage”、JP05171031“method for estimating superposed damage of creep and fatigue of high-temperature structure material”,欧洲专利申请CN20151586289(申请日为2015年09月15日)“Forecasting method for creep-fatigue life of material”、CN20141140477(申请日为2014年04月09日)“Low-cycle creep and fatigue life evaluation method under conditions of high temperature and multiaxial spectrum load”,要么侧重于蠕变-疲劳交互作用机制下的寿命预测方法,要么聚焦蠕变-疲劳机制下结构材料的损伤评价方法,过程复杂,未涉及蠕变疲劳失效机制下结构强度的设计与安全评价问题。因此,本领域迫切需要一种简单的、可操作性强且能够反映结构蠕变和疲劳失效机制的寿命与强度分析方法。



技术实现要素:

针对高温旋转构件的高温高周疲劳的问题,本发明提出一种设计考核高温旋转构件寿命与强度的双判据图及其构建方法,以及利用该双判据图来设计考核高温旋转构件寿命与强度的双判据图方法,从而解决现有技术中存在的问题。

为了实现上述目的,本发明采用如下技术方案。

在第一方面中,本发明提供一种构建设计考核高温旋转构件寿命与强度的双判据图的方法,所述方法可包括下述步骤:S1、分别进行高温旋转构件材料的高温疲劳试验和高温旋转构件材料的蠕变试验;S2、结合高温疲劳试验,获得材料在指定寿命下的疲劳强度,其中应力比R=-1及R=0,且其中疲劳试验数据转换到设计数据时应考虑数据的分散性因素,给予一个安全系数;S3、根据蠕变试验结果,获得高温旋转构件材料在指定寿命下的持久强度数据;S4、根据步骤S2中获得的高温旋转构件材料的疲劳数据,绘制设计考核高温旋转构件寿命与强度的双判据图中的疲劳部分,以得到一根以平均应力为横坐标、以应力幅为纵坐标的直线,具体参见图4(a)和图4(b);S5、根据步骤S3中获得的高温旋转构件材料的持久强度数据,绘制设计考核高温旋转构件寿命与强度的双判据图中的蠕变部分,具体参见图4(a)和图4(b),所述蠕变部分作为步骤S4中直线的截止线,且是一条垂直于作为横坐标的平均应力的直线。在图4中,图4(a)显示同一寿命(N,t)不同温度(T)下的双判据图;且图4(b)显示同一温度(T)不同寿命(N,t)下的双判据图。

在一种实施方式中,在步骤S2中,在已知材料的S-N曲线的情况下,可通过对S-N曲线进行内插或外推得到材料指定寿命下的疲劳强度。

在一种实施方式中,步骤S4可包括基于步骤S2中获得的应力比为R=-1和R=0时对应设计寿命下的疲劳数据,以平均应力为横坐标、以应力幅为纵坐标绘制疲劳数据的结果,其中步骤S4中的疲劳部分可通过下述式(1)表示,

在式(1)中,σm为平均应力,σa为应力幅,σ-1表示设计寿命下R=-1的疲劳强度,σ0表示设计寿命下R=0的疲劳强度。

在一种实施方式中,步骤S5中的蠕变部分可通过下述式(2)表示,

σm=σ(t,T) (2)

在式(2)中,σm为平均应力,σ(t,T)为服役温度和设计寿命下的持久强度,t表示服役时间,且T表示服役温度;其中式(2)代表此时平均应力等价于设计寿命下的持久强度。

在第二方面中,本发明提供一种利用如第一方面所述的方法构建的设计考核高温旋转构件寿命与强度的双判据图。

又在另一方面中,本发明提供一种利用如第二方面所述的设计考核高温旋转构件寿命与强度的双判据图来设计考核高温旋转构件的寿命与强度的方法,所述方法可包括下述步骤:S6、根据高温旋转构件材料的性能参数和高温旋转构件材料的服役参数,对高温旋转构件进行应力分析,得到高温旋转构件在交变载荷作用下的平均应力和应力幅,确定高温旋转构件在服役工况下的危险截面及危险点;S7、将高温旋转构件危险截面及危险点的平均应力和应力幅绘制到双判据图中,若以平均应力为横坐标且以应力幅为纵坐标的点落在安全区域内,则设计寿命内该高温旋转构件安全。

在一种实施方式中,在步骤S6中,确定高温旋转构件在服役工况下的危险截面及危险点可包括确定高温旋转构件的高平均应力区和高应力幅区。

在一种实施方式中,在步骤S6中,所述旋转构件材料性能参数可包括线膨胀系数α、旋转构件材料的弹性模量E、泊松比μ和材料密度ρ,且所述高温旋转构件的服役参数可包括转速、热边界和位移边界。

在一种实施方式中,在步骤S6中,可通过材料性能数据库查询或进行相应的试验测试获得所述旋转构件材料的性能数据。

在一种实施方式中,在步骤S7中,若以平均应力为横坐标且以应力幅为纵坐标的点没有落在安全区域内,则可修改设计方案并返回步骤S6进行再次分析。

与现有技术相比,本发明的有益效果在于设计考核过程简单、可操作性强,且考核结果可靠,有望最终运用于高温下旋转构件的高周疲劳寿命考核与评价。

附图说明

图1为本发明的较佳实施实例的流程框图。

图2为本发明高温旋转构件材料设计温度下S-N曲线示意图。

图3为本发明高温旋转构件材料不同温度下持久强度示意图。

图4为本发明高温旋转构件寿命与强度设计考核的双判据图示意图,其中图4(a)显示同一寿命(N,t)不同温度(T)下的双判据图;且图4(b)显示同一温度(T)不同寿命(N,t)下的双判据图。在图4中,T表示设计温度,t表示设计寿命,N表示相应设计寿命下的循环次数。

图5为本发明实施实例有限元分析结果图,其中图5(a)显示转轴的温度场;图5(b)显示考核部位的平均应力;图5(c)显示考核部位的应力幅;且图5(d)显示进行考核的具体路径。

图6为本发明实例考核结果图。

图7为本发明方法与其它常用方法对实施例进行考核的对比图。

具体实施方式

下面结合附图给出本发明较佳实施方式,以详细说明本发明的技术方案,给出实施例。但是应该指出,本发明的实施不限于以下的实施方式。

实施例1

某旋转轴,转速3000转/分钟,设计寿命30年,材料为铁素体耐热钢,现需要对其稳定工作情况下温度范围为600-613℃区域的高周疲劳强度进行考核(参见图1)。

(1)对该转轴材料分别进行了高温疲劳试验和蠕变试验,获得了考核温度下应力比R=-1以及R=0的S-N曲线,如图2所示。同时得到了考核温度下的持久强度曲线,如图3所示。

(2)根据得到的S-N曲线,获得107寿命下应力比R=-1以及R=0时的疲劳强度,再利用式(3)进行寿命外推,得到设计寿命为4×1010循环周次下的疲劳强度值,分别为96MPa(R=-1)和72MPa(R=0),同时考虑到疲劳数据的分散性等因素,根据ASME中的方法,将得到的疲劳强度值除以2得到设计疲劳强度,分别为48MPa(R=-1)和36MPa(R=0)。

SamN=C (3)

在式(3)中,Sa表示应力幅,C和m是与材料和服役工况有关的常数。

(3)根据蠕变试验得到的持久强度曲线,得到613℃、105小时寿命下的持久强度为100MPa。

(4)根据步骤(2)中得到的疲劳强度设计值绘制设计考核高温旋转构件寿命与强度的双判据图中疲劳部分,即以平均应力为横坐标,以应力幅为纵坐标,将(2)中获得的应力比R=-1以及R=0设计寿命下的疲劳数据绘制在直角坐标系中,连接两点得到一条直线,相应的表达式如式(4)所示。

在式(4)中,σa为应力幅,且σm为平均应力。

(5)根据步骤(3)中获得的高温旋转构件材料的持久强度数据绘制设计考核高温旋转构件寿命与强度的双判据图中蠕变部分。该蠕变部分作为(4)中直线的截止线,如式(5)所示。构建的双判据图见图6中的实线。

σm=100MPa (5)

(6)转轴的位移边界和热边界由设计给出,由得到的位移边界和热边界经软件ABAQUS6.10进行有限元分析得到转轴的温度场和应力场。参见图5(a),根据分析结果对转轴600-613℃区域的高周疲劳强度进行考核,该部位的平均应力参见图5(b),应力幅参见图5(c),在该部位选取了几条不同的路径进行考核,具体路径参见图5(d)。

(7)将步骤(6)中考核区域的平均应力和应力幅绘制到步骤(3)和(4)中得到的设计考核高温旋转构件寿命与强度的双判据图内,结果参见图6。由图6可以看出,所有的数据点都落在高温旋转构件寿命与强度设计考核的双判据图的安全区域内,因此该转轴在设计寿命下高周疲劳强度满足要求。

对比例1

分别用本领域常见的方法即Goodman方法、Soderberg方法、Gerber方法来设计考核与实施例1相同的材料,考核结果参见图7。图7给出了本发明提出的双判据图方法与其它常用方法的比较结果图,从图7中可以看出,与本发明所提出的双判据图相比,其它方法明显偏离试验数据点,因此其它方法在高温下的应用明显受到限制,故而本发明所提出的双判据图在高温下的适用性明显优于其它方法。

上述所列的实施例仅仅是本发明的较佳实施例,并非用来限定本发明的实施范围。即凡依据本发明申请专利范围的内容所作的等效变化和修饰,都应为本发明的技术范畴。

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1