一种单波导杆材料动态压痕实验方法与流程

文档序号:11405120阅读:321来源:国知局
一种单波导杆材料动态压痕实验方法与流程

本发明涉及一种用于测试材料动态力学特性的实验方法,尤其涉及一种单波导杆材料动态压痕实验方法。



背景技术:

工程材料的力学行为受到其应力状态的明显影响,而在动态加载条件下,材料的力学行为更与加载的速度(具体度量为应变率)相关,对于高应变率下材料力学性能的测量,现在实验技术受到各种限制仍不尽完美。材料硬度实验是工程界广泛采用的材料力学性能的测试方法,简单有效,而仪器化压痕、纳米压痕实验技术则是传统硬度测量的进一步发展,可以测得压入过程的变形与受力,但现有技术仅限于材料的静态性能测试。虽然也有采用动态压入的实验技术如常见的里氏、肖氏硬度计等,但它们仅具有形式上的“动态”,并不能测得足够的材料的动态力学响应的细节。

目前也有采用霍普金森压杆来研究材料的动态力学特性,但现有的方法由于压头与压杆的波阻抗不完全匹配,使得其实验中压入量时程测量的误差不可忽略;又由于动态力传感器的支承方式,使得压入力的测量不可避免地含有附加振荡,从而导致其整体的测量精度不高,且不适用于高加载速度下的测试。此外,在许多情况下,希望对于材料动态力学特性的测试能够在其工作的环境下进行即所谓原位测试,而目前的动态硬度测试技术对此无能为力。



技术实现要素:

本发明所要解决的技术问题是提供一种可精确测得压头压入材料过程的压入力与压入位移时程曲线,且可用于应变率高达105s-1量级的材料动态力学特性的原位测试及工件动态力学性能的现场测试的单波导杆材料动态压痕实验方法。

本发明解决上述技术问题所采用的技术方案为:一种单波导杆材料动态压痕实验方法,包括以下具体步骤:

(1)、在压杆的右端部一体设置球形的压头,并在压杆的左端部固定脉冲整形器;

(2)、在压杆的中部固定电阻应变片,并将电阻应变片与信号调理器电连接,将信号调理器和计算机处理系统分别与数字示波器电连接;

(3)、在不安装被测试件的状态下进行撞击实验,具体为:发射撞击杆,撞击杆撞击压杆的左端,压杆中的应力波在压头处发生自由面反射,电阻应变片分别测得压杆中的入射波应变信号εi0(t)和反射波应变信号εri(t),同时测出压头的速度时程vi(t),然后通过傅立叶变换得到相应的频域变量ei0(ω)、eri(ω)和vi(ω),即ei0(ω)=f[εi0(t)],eri(ω)=f[εri(t)],vi(ω)=f[vi(t)];

(4)、在不安装被测试件且去掉撞击杆的状态下进行实验,具体为:在压头上施加轴向力脉冲f(t),电阻应变片测得应变信号εrf(t),同时测出压头的速度时程vf(t),然后通过傅立叶变换得到相应的频域变量ff(ω)、erf(ω)和vf(ω),即ff(ω)=f[f(t)],erf(ω)=f[εrf(t)],vf(ω)=f[vf(t)];

(5)、在压头的右侧放置被测试件,并对被测试件的撞击面进行打磨,然后通过撞击杆进行撞击实验,具体为:发射撞击杆,撞击杆撞击压杆的左端,压杆右端部的球形的压头压入被测试件,形成压坑过程,同时,电阻应变片分别测得压杆中的入射波应变信号εi(t)和反射波应变信号εr(t),并通过傅立叶变换得到相应的频域变量ei(ω)和er(ω);

(6)、将上述所测得的各个信号代入关系式:

处理后,得到压头的压入力时程曲线findent(t)、压入速度时程曲线vindent(t)和压入位移时程曲线uindent(t),实现对材料动态力学性能的测试,上述关系式(1)、(2)中,er-indent(ω)表示频域中由压痕发生所产生的反射波信号成份,vindent(ω)表示频域中的压头压入速度,findent(ω)表示频域中的压头压入力,符号f-1[]表示傅立叶逆变换。

进一步地,所述的压杆和所述的压头的材料均为硬质合金,如碳化钨硬质合金。

进一步地,所述的压杆的直径与所述的压头的直径之比为1~6:1,所述的撞击杆的直径与所述的压杆的直径相等,所述的压杆的长度与所述的撞击杆的长度之比大于等于5。

进一步地,所述的脉冲整形器为铜或铝质薄片,厚度为0.1~0.5mm。

进一步地,所述的被测试件为圆盘状,且直径d大于10倍的压头直径,当被测试件的厚度l≤2cptf或被测试件的直径d≤2cptf时,其中:cp表示被测试件的材料中p波波速,tf表示被测试件的加载脉冲宽度,在所述的被测试件的右侧设置支撑重块,所述的支撑重块与所述的被测试件的右端面紧密接触。

与现有技术相比,本发明的优点是通过该实验方法可精确测得压头压入被测试件过程中的压入力、压入位移和压入速度时程曲线,且可用于应变率高达105s-1量级的材料动态力学特性的原位测试及工件动态力学性能的现场测试;此外,该实验方法为基于频域—时域变换的精确实验数据处理方法,克服了传统的、基于一维应力波理论的数据处理方法无法应用于该类实验的困难。

附图说明

图1为本发明的结构示意图;

图2为本发明的步骤(5)在进行撞击实验时所测得的应变信号图;

图3为本发明所测得的压头压入力时程曲线和压入位移时程曲线。

具体实施方式

以下结合附图实施例对本发明作进一步详细描述。

如图所示,一种单波导杆材料动态压痕实验方法,包括以下具体步骤:

(1)、在压杆1的右端部一体设置球形的压头11,并在压杆1的左端部固定脉冲整形器2;

(2)、在压杆1的中部固定电阻应变片3,并将电阻应变片3与信号调理器4电连接,将信号调理器4和计算机处理系统5分别与数字示波器6电连接;

(3)、在不安装被测试件7的状态下进行撞击实验,具体为:发射撞击杆8,撞击杆8撞击压杆1的左端,压杆1中的应力波在压头11处发生自由面反射,电阻应变片3分别测得压杆1中的入射波应变信号εi0(t)和反射波应变信号εri(t),同时测出压头11的速度时程vi(t),然后通过傅立叶变换得到相应的频域变量ei0(ω)、eri(ω)和vi(ω),即ei0(ω)=f[εi0(t)],eri(ω)=f[εri(t)],vi(ω)=f[vi(t)];

(4)、在不安装被测试件7且去掉撞击杆8的状态下进行实验,具体为:在压头11上施加轴向力脉冲f(t),电阻应变片3测得应变信号εrf(t),同时测出压头11的速度时程vf(t),然后通过傅立叶变换得到相应的频域变量ff(ω)、erf(ω)和vf(ω),即ff(ω)=f[f(t)],erf(ω)=f[εrf(t)],vf(ω)=f[vf(t)];

(5)、在压头11的右侧放置被测试件7,并对被测试件7的撞击面进行打磨,然后通过撞击杆8进行撞击实验,具体为:发射撞击杆8,撞击杆8撞击压杆1的左端,压杆1右端部的球形的压头11压入被测试件7,形成压坑过程,同时,电阻应变片3分别测得压杆1中的入射波应变信号εi(t)和反射波应变信号εr(t),并通过傅立叶变换得到相应的频域变量ei(ω)和er(ω);

(6)、将上述所测得的各个信号代入关系式:

处理后,得到压头11的压入力时程曲线findent(t)、压入速度时程曲线vindent(t)和压入位移时程曲线uindent(t),实现对材料动态力学性能的测试,上述关系式(1)、(2)中,er-indent(ω)表示频域中由压痕发生所产生的反射波信号成份,vindent(ω)表示频域中的压头压入速度,findent(ω)表示频域中的压头压入力,符号f-1[]表示傅立叶逆变换。

上述实施例中,压杆1和压头11的材料均为硬质合金,如碳化钨硬质合金,压杆1的直径与压头11的直径之比可在1~6:1的范围内根据实际情况进行选择,撞击杆8的直径与压杆1的直径相等,压杆1的长度与撞击杆8的长度之比大于等于5;脉冲整形器2可以为铜或铝质薄片,厚度可在0.1~0.5mm的范围内选择;此外,被测试件7为圆盘状,且直径d大于10倍的压头11的直径,当被测试件7的厚度l≤2cptf或被测试件7的直径d≤2cptf时,其中:cp表示被测试件7的材料中p波波速,tf表示被测试件7的加载脉冲宽度,在被测试件7的右侧设置支撑重块,支撑重块与被测试件7的右端面紧密接触。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1