一种基于谐波测量高压电容器容值的方法和系统与流程

文档序号:13205101阅读:595来源:国知局
一种基于谐波测量高压电容器容值的方法和系统与流程

本发明属于电容器测量技术领域,具体地涉及一种滤波场中高压电容器容值测量的方法和系统。



背景技术:

直流输电系统具有线路造价低、适合远距离输电、没有系统稳定问题、调节快速、运行可靠等优点,越来越多地被应用于远距离输电和交流系统互联的场合。但由于直流输电系统中使用由电力电子器件构成的换流站会产生大量的谐波,对整个直流输电系统直流侧和交流侧产生严重的谐波危害。目前广泛采用装设无源滤波器的方法,来对这些谐波进行滤除,以保证电能质量,并提供相应的无功补偿。

无源滤波器由电容、电感和电阻元件串并联构成,其中高压电容器组的投资占比较大且承受大部分滤波器组的工频压降,是无源滤波器场的最重要和最贵重的设备,如附图1所示,因此对其进行准确的测量具有重要的意义。对高压电容器组而言,由于单只电容器元件的额定电压、电流及容量均不能满足滤波器组对电容器容量的需求,因此实际滤波器组的高压电容组都是通过将多个电容器元件以一定的串并联方式连接而构成,一般结构为,各个桥臂为若干电容器进行串联,然后在进行并联,其接线方式如附图2和附图3所示。由于电容器组的电容器元件众多,因此中间连接导线较多,对整组而言,中间具有较长的导线,且这些导线均为多股铜或铝绞线,如附图4所示,因此,将具有很大的电感。对每只桥臂而言,若干个电容器进行串联,则桥臂电容将比较小,而各个电容器之间的导线电感,相当于串联,电感值越串联,其值越大,因此在对桥臂电容和整体电容进行测量时,这部分电感的存在,将严重影响测量的准确性;同时,这部分导线中,也具有一定的电阻,虽然这部分电阻较小,对整体电容的影响较小,但也具有一定的影响。因此,必须对传统的测量方法进行改进,以提供更准确的高压电容器的整体电容值和桥臂电容值。

在目前电容器值的测量方案中,均为考虑导线电感和电阻的影响,这对单只电容的测量是有利的,然而在对高压电容器组的整体和桥臂电容的测量中,将会存在较大的误差。



技术实现要素:

为克服上述缺陷,本发明提供一种基于谐波测量高压电容器容值的方法和系统,把传统测量方法中的电容,等效为电容、电感和电阻串联的支路,通过谐波发生器,发出谐波,加在该支路两端,然后采集电流信号和电压信号,通过对电流信号和电压信号进行fft分解,然后从中选择三种不同频率的电压信号和电流信号,即可求出不同频率下阻抗值,然后通过计算即可求出该支路电容值、电感值和电阻值。该方法原理简单,现实易行,不仅能够对高压电容器组的整体值和桥臂值进行精确测量,也能同时对单只电容进行精确测量,具有很大的应用价值和市场推广前景。

本发明的技术方案如下:

一种基于谐波测量高压电容器容值的方法,其特征在于,通过谐波发生器,发出谐波作用于高压电容器,并对所述高压电容器两端电压和电流进行采集,并进行谐波分析,进而计算出所述高压电容器的电容值。

所述高压电容器由多个电容串联构成。

所述谐波分析基于采集到的所述高压电容器两端电压和电流值,并对所述电压和电流值进行fft分解,通过分析其中三次不同频率的谐波,就能计算出所述高压电容器的电容值;和/或,所述谐波分析基于所述高压电容器的等效模型,所述高压电容器的等效模型为由一个电容、一个电感、一个电阻构成的串联支路结构。

所述基于谐波测量高压电容器容值的方法,还能同时测量得到高压电容器的电感值和电阻值。

所述分析其中三次不同频率的谐波,具体步骤为,从所述fft分解后的结果中,选择三个不同的谐波次数,并求出在所述三个不同的谐波次数下的阻抗值。

一种基于谐波测量高压电容器容值的系统,其特征在于,包括谐波发生模块,信号采集模块,信号处理模块和输出模块;所述谐波发生模块用于发出谐波,所述信号采集模块用于采集所测高压电容器两端的电压信号和电流信号,所述信号处理模块用于对所述电压信号和电流信号进行谐波分析,并计算出所述高压电容器的电容值,所述信号输出模块用于显示所述电容值。

本发明的有益效果是:

通过对传统测量方法的改进,即可更准确的计算出高压电容器组的桥臂电容值和整体电容值,测量原理更接近现场实际,测量方法更加精确,在高电压电容器测量的场合具有很高的应用价值和市场推广前景。

附图说明

图1是本发明实施例的一种高压电容器的实际图;

图2是本发明实施例的一种高压电容器的原理接线图;

图3是本发明实施例的一种高压电容器的详细接线图;

图4是本发明实施例的高压电容器的连接导线;

图5是本发明实施例的高压电容器桥臂的等效电路图;

图6是本发明实施例的各功能模块图。

具体实施方式

以下结合具体实施例对本发明进行说明,各实施例仅用于说明本发明的技术方案,而非对其限制。

附图1为一种高压电容器的实际接线图,附图2为其原理接线图,结合附图1和附图2,以桥臂c11的测量为例,在对c11进行测量时,由附图1和附图2可以看出,c11共有18只电容器组成,每只电容器之间通过铝绞线连接,铝绞线如图4所示。在附图1中,可以看出连接c11各只电容的铝绞线较多,整体串联之后将具有较大的电感,因此对桥臂c11进行如附图5所示的等效建模。

在附图5中,通过谐波发生器,作用于所测桥臂(所测桥臂为多只电容串联组成,传统的方法没有考虑中间连接导线的电感和电阻,但由于实际现场,中间导线较长,且为铝绞线,因此考虑进去能够更加准确)两端,通过对两端电压和电流的采集,可以得到桥臂两端的电压us和电流i。为了对桥臂电容c11进行测量,下面进行详细说明。

对电压us,电流i进行fft分解,得到不同频率下的电压幅值和电流幅值

选取h1,h2,h3三个不同的谐波次数,并求出在该谐波次数下的阻抗值z(h1),z(h2),z(h3)。求解方法为:

(1)

根据附图5的结构,可以计算在h1,h2,h3次谐波下,阻抗分别为:

(2)

其中,

其中,r11是桥臂等效电阻,l11是桥臂等效电感,c11是桥臂等效电容,在式(2)中,有三个方程,三个未知数,解三元一次方程,即可求解出结果,即得到桥臂电容c11的准确值。

图6所示为实施例的各功能模块图,在图6中,主要有谐波发生模块,信号采集模块,信号处理模块和输出模块,谐波发生模块主要用于发出谐波,信号采集模块主要是采集所测桥臂电压信号和电流信号,信号处理模块主要是对电压信号和电流信号进行fft分解,并通过三次谐波,计算出桥臂电容值。信号输出模块主要是显示桥臂电容值。

可以看到,通过在谐波发生器,作用于所测桥臂两端,然后采集桥臂两端的电压信号和电流信号,并通过fft分解,即可计算出桥臂的电容值,同时,该方法对单只电容的测量也具有通用性。该方法原理简单,较传统方法而言,排除了导线电感,电阻的干扰,所测量结果更加准确,为运行人员更加正确的认识高压电容器的运行状态提供了重要的技术手段,对于无源滤波器的正常运行具有重要的意义,该方法具有很高的实用价值和市场推广前景。

最后应说明的是:以上所述的各实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1