超声波流量测量仪的制作方法

文档序号:16055271发布日期:2018-11-24 11:37阅读:172来源:国知局

本发明涉及一种超声波流量测量仪(ultraschalldurchflussmessgerät),其带有至少一个测量管,其中,该测量管具有至少一个凹部;带有至少一个第一超声波转换器和第二超声波转换器,其中,该第一超声波转换器设计为超声波发送器和/或超声波接收器,并且其中,该第二超声波转换器设计为超声波发送器和/或设计为超声波接收器;并且带有至少一个反射面,其中,该第一和第二超声波转换器如此地布置在测量管中,使得在第一和第二超声波转换器之间的测量路径包括在反射面处的至少一个反射。

背景技术

利用超声波流量测量仪测量流动通过测量管的介质的流量根据现有技术是已知的。超声波流量测试仪通常具有测量管和至少两个设计为超声波发送器和/或超声波接收器的超声波转换器,其在流动方向上(关于测量管轴线轴向地)相互间隔地布置在测量管处。为了测量流量,沿着在超声波转换器之间的测量路径不仅在流动方向上而且相反于流动发出超声波信号。由于夹带效应(mitführeffekt),得出信号的不同的行进时间(laufzeit),这些信号沿着测量路径随着或逆着流动而运动。从行进时间差别,在考虑体积流量的测量管横截面的情况下确定流动速度。

在确定流动速度时,同样可考虑流动介质的流动轮廓(strömungsprofil)的设计。原则上可区分层状的和紊流的流动轮廓。紊流的或层状的流动的构造方案尤其取决于雷诺数(reynoldszahl)。

为了确保在确定流动速度时的尽可能少的错误,已知如下,不仅在r=0r1时在测量管轴线的区域中而且在半径r>0.5r1时在边缘区域中测定流动轮廓,其中r1是内测量管半径。

由文件ep0639776b1的现有技术已知一种超声波流量测量仪,在其中超声波信号经过声学路径(akustischepfade),其关于介质的涡流(verwirbelung)具有不同程度的敏感性。在此,由超声波发送器发出的信号在相对测量管的内壁的至少两个反射后由超声波接收器所接收。在此,超声波信号经过测量管横截面的大部分并且因此提供了流动的可靠图像。

印刷文件de102012013916a1公开了一种带有两个布置在测量管处的超声波转换器的超声波流量测量仪,其中,超声波转换器如此布置,且其中,在超声波转换器之间的测量路径具有多个反射面,其中,在超声波转换器之间的测量路径具有至少三个直的子区段。三个子区段相对测量管轴线的最小间距为0.4和0.8r1之间,其中,r1是测量管半径。同样呈现了一种设计方案,在其中超声波信号经由五个反射面到达超声波接收器。



技术实现要素:

由所说明的现有技术出发,本发明的任务是说明一种超声波流量测量仪,利用其可特别简单地尤其在边缘区域中测定流动轮廓。

根据本发明,该任务通过以下方式解决,即反射面布置在凹部中。在此,反射面关于内部的测量管壁回置地(rückversetzt)布置。原则上,在本发明的范围中,凹部不仅理解为材料厚度的局部减少而且理解为材料留空部(materialaussparung),即材料中的孔。

已知如下,通过反射面的回置,在超声波转换器之间的测量路径由于改变的反射角而可被移动到流动轮廓的边缘区域中。以有利的方式可如此地特别简单地测定流动轮廓的边缘区域。

根据一种有利的设计方案,该超声波流量测量仪具有至少一个第一和至少一个第二反射面和至少一个第一和第二凹部,其中,第一反射面在第一凹部中且第二反射面在第二凹部中布置,且其中第一和第二超声波转换器如此地布置在测量管处,使得在超声波转换器之间的测量路径包括在第一反射面处的至少一个反射和在第二反射面处的至少一个反射。

该设计方案具有如下优点,流动轮廓在边界区域中在半径r>0.5r1的情况中利用仅两个超声波转换器可特别精确地被测定。在超声波转换器之间的测量路径在轴向的俯视图中形成等边三角形。在使用等边三角形的几何关系的情况下,可借助于以下的公式确定凹部的深度:r2=2·x1·r1,其中,r2是反射点相对测量管轴线的间距,其中,x1处在0和1之间、尤其在0.5和1之间,且其中,r1是内部的测量管半径。

根据另一设计方案,反射面设计为扁平的或凹状的或圆弧形的。特别有利的是,反射面设计为带有曲率半径r2的圆的圆弧。

此外有利的是,凹部的侧壁倾斜地设计且尤其与反射面包夹钝角。该设计方案具有如下优点,超声波信号能够以较大的角落入到凹部中并且离开凹部,且此外流动的介质通过倒角的侧边而不太被干扰。

该至少一个凹部可以是轴向延伸的凹部,其例如借助于切削尤其利用拉刀(räumwerkzeug)引入到测量管中。

另一种有利的设计方案通过以下方式出众,在至少一个凹部中布置有带有反射面的反射元件。通过反射元件作为分开的构件引入到凹部中,其可特别灵活地尤其流动匹配地设计。该凹部可尤其设计为孔,在其中起密封作用地布置有反射元件。该设计方案具有如下优点,流动的通过凹部所引起的干扰可被最小化。

如果落入到凹部中的射束具有关于反射面的垂直线的角,该角大于根据斯涅尔折射定律(snelliusbrechungsgesetz)的临界角,那么除了超声波信号的反射外同样激发表面波(oberflächewelle),其不仅经由介质而且经由测量管本身导引至超声波接收器。该波干扰地影响待测量的信号且因此是非期望的。

就此而言,根据另一有利的设计方案,该反射元件可具有专门的几何形状,用于抑制或最小化该干扰信号,其中,该干扰信号由于反射元件的几何设计方案而被导离超声波接收器。

根据一种特别有利的设计方案,反射元件如此设计,使得内部的面向介质的表面形成截椎(kegelstumpf)的遮盖面。在此,在本发明的范围中,遮盖面理解为截椎的外表面。优选地,截椎脚的边缘具有带有一部分柱体的截椎脚的截面的形状。特别优选地,柱体具有圆形的或椭圆形的底面。根据另一设计方案,截椎脚的边缘具有带有半柱体或带有一部分柱体的截椎脚的截面的形状,其周面包括圆弧,其小于半圆。

在此,反射面优选地如此设计,使得反射超声波信号的尽可能大的部分。例如,反射面设计成圆形的带有直径d的,其中,d基本上相应于超声波信号的横截面。如果此外激发另外反射干扰信号到介质中的表面波,那么该干扰信号由于截椎的倾斜的侧面而不在接收器的方向上被发出。此外,直径的干扰或介质的影响由于截椎的倾斜的侧面而被最小化。

另一设计方案通过以下方式出众,即,该反射元件至少部分地由塑料或由金属,尤其由青铜、黄铜、钢、铝或钛组成。

这些材料的使用确保了之前描述的瑞利效应(rayleigheffekt)的最小化。

根据另一设计方案,存在至少一个另外的凹部,其中,第一和/或第二超声波转换器布置在至少一个另外的凹部中。根据该设计方案,超声波转换器如此布置在测量管中,使得其不影响流动。优选地,超声波转换器也回置地布置,由此在半径r>0.5r1时在超声波转换器之间的测量路径位于流动轮廓的边缘区域中。

特别优选的是,超声波转换器至少部分布置在测量管的下半体中。该设计方案具有如下优点,如果介质具有空气或气体泡,这些空气或气体泡不在超声波转换器的区域中、尤其不在其中布置有超声波转换器的凹部中积累,并且因此引起测量误差。

根据另一优选的设计方案,存在至少一个第三和第四超声波转换器,其分别设计为超声波发送器和/或超声波接收器,其中,第三和第四超声波转换器在流动方向上偏移地如此布置在测量管处,使得在第三和第四超声波转换器之间的测量路径在r=0r1时与测量管轴线相交。

附图说明

详细地,此时存在大量的设计和改进根据本发明的超声波流量测量仪的可能性方案。对此,不仅参考排在独立专利权利要求后的专利权利要求,而且结合图纸参考优选实施例的随后的描述。在图纸中,

图1示出了根据带有由超声波信号所经过的测量路径的流量测量仪的第一实施例的测量管的示意性截面视图,

图2示出了根据流量测量仪的第一实施例的测量管的第二视图,

图3a-3c示出了凹部的可能的设计方案,

图4示出了流量测量仪的第二实施例的截面视图,

图5示出了流量测量仪的第三实施例,

图6示出了流量测量仪的第四实施例的截面视图,

图7示出了根据第四实施例的在凹部中的反射元件,并且

图8a-8d示出了根据第四实施例的反射元件的不同示图。

参考标记列表

1流量测量仪

2测量管

3测量路径

4超声波转换器

5超声波转换器

6反射面

7反射面

8凹部

9凹部

10凹部

11侧壁

12反射元件

13反射元件

14超声波转换器

15超声波转换器

16干扰信号。

具体实施方式

图1示出了根据带有由超声波信号所经过的测量路径3的超声波流量测量仪1的第一实施例的测量管2的示意性截面视图。第一超声波转换器4和第二超声波转换器5如此在流动方向上相互偏移地布置,使得由设计为超声波发送器的超声波转换器4,5发出的信号在第一反射面6处的反射后和在第二反射面7处的反射后到达设计为超声波接收器的超声波转换器4,5。由此得出的测量路径3具有在轴向的俯视图中的等边三角形的形状。

反射面6,7布置在各一个凹部8,9中,并且超声波转换器也布置在测量管2的凹部10中。通过不仅反射面6,7而且超声波转换器4,5的回置,在测量管3内的流动轮廓以有利的方式在边缘区域中在测量范围r>0.5r1时被测定,其中r1是测量管半径。在确定介质的速度时由于流动轮廓的紊流的或层状的设计方案引起的错误通过在边缘区域中的测定而特别小。就此而言,可利用在图1中呈现的实施例特别精确地利用仅两个超声波转换器4,5测定在边缘区域中的流动轮廓。

借助于等边三角形的几何关系,在测量管半径r1已知的情况下,相对于测量管轴线的反射点的间距r2和凹部的深度可如下容易地算出:r2=2·x1·r1。如果例如内部的测量管半径r1=10mm并且在r=0.7r1或r≥0.7r1时测定区域,则相对反射点的间距为r2=14mm。

在呈现的实施例中,反射面6,7设计为带有半径r2的圆的圆弧。

图2示出了根据流量测量仪1的第一实施例的测量管2的第二视图,其中,测量管2具有凹部8,9和10。凹部8,9和10是轴向的凹部,其通过切削引入到测量管2中。

图3a至c示出了凹部8,9和10的可能的设计方案。根据在图3a中示出的设计方案,反射面6,7设计为带有半径r2的圆的圆弧,并且侧壁基本上垂直于圆弧地设计。根据在图3b中示出的设计方案,反射面6,7设计为扁平的,并且侧壁11基本上垂直于反射面6,7地设计。根据在图3c中呈现的设计方案,反射面6,7设计为扁平的,并且侧壁11与反射面6,7包夹钝角。

图4示出了流量测量仪1的第二实施例的截面视图,其带有测量管2,带有两个超声波转换器4,5,其分别设计为超声波发送器和超声波接收器,其中,在截面视图中仅示出了超声波转换器4,并且其中,测量管2具有四个凹部8,9和10,其中呈现有三个凹部8,9和10。在凹部10中布置了超声波转换器4。在两个剩余的呈现的凹部8和9中分别布置有带有反射面6和7的反射元件12和13。

在呈现的实施例中,凹部8,9和10设计为孔,超声波转换器4,5或反射元件12,13被起密封作用地引入到该孔中。反射面6,7设计为扁平的。超声波信号的测量路径3整体上在轴向的俯视图中相应于等边三角形。

图5示出了流量测量仪1的第三实施例,其中,除了两个超声波转换器4,5之外为了测定在边缘区域中的流动轮廓存在两个另外的超声波转换器14,15,其如此布置在测量管2处,使得所述超声波转换器借助于v形的测量路径测定在测量管轴线的区域中的流动轮廓。根据该实施例,流动轮廓可特别精确地不仅在测量管轴线的区域中而且在边缘区域中特别精确地且利用仅四个超声波转换器4,5,14,15来测定。在确定介质的速度和确定体积流量时的错误由此特别小。

在图6中以截面示图呈现了带有两个超声波转换器4,5和布置在凹部8,9中的两个反射元件12,13的流量测量仪1的第四实施例,其中,如之前那样仅示出了一个超声波转换器4。反射元件12,13在其设计方案中如此地匹配,使得一方面反射超声波信号的尽可能大的部分,并且另一方面将可能激发的表面波从测量路径3并且就此而言从超声波接收器4,5导离,由此其不作为干扰信号影响测量。

图7示出了在凹部8,9中的在图6中布置的反射元件12,13的放大视图。反射元件12,13具有扁平的反射面6,7和倾斜的侧壁11。反射面6,7的直径如此设计尺寸,使得反射超声波信号的大部分。如果落入的超声波信号具有超过根据斯涅尔折射定律的临界角的角,产生表面波的构造。反射元件12,13然后将另一声信号16反射到介质中。在此,反射元件12,13如此设计,使得干扰信号16的反射由于倾斜的侧面而不在感兴趣的超声波信号的传播方向上实现。

图8a至8d示出了在图6和7中呈现的反射元件12,13的不同示图。反射面6,7设计成圆形的带有直径d的,其中,d基本上相应于反射的超声波信号的直径。侧壁11与到反射面6,7上的垂直线包夹锐角β。总的来说,面向介质的表面具有截椎的遮盖面的形状,其中,截椎脚的边缘具有带有一部分圆形的柱体的截椎脚的截面的形状,且其中,柱体的底面具有半径r1。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1