一种无芯片RFID湿度传感器的制作方法

文档序号:15734006发布日期:2018-10-23 21:10阅读:430来源:国知局

本发明涉及无芯片RFID领域,具体涉及一种无芯片RFID湿度传感器。



背景技术:

射频识别(Radio Frequency Identification,RFID)作为一种通过电磁信号检测特定目标并且读取相关数据,而无需系统与特定目标之间建立机械或光学接触的无线识别技术。如今,射频识别技术已经被广泛应用在各个行业,每年都会创造上百亿的收入。典型的射频识别系统包括应用系统、阅读器以及标签三部分,其中标签扮演了重要角色。

传统的有芯片标签由于结构中包含集成电路(IC)芯片,增加了制造成本,无法满足大规模批量生产和应用的要求。无芯片RFID标签去除了集成电路芯片,与传统的有芯片RFID标签相比,无芯片RFID标签具有低成本的优势。

传统RFID标签可以编码地址信息,但是不能直接识别物理信息。无芯片RFID标签可将标签与传感器的结合,利用射频识别对物体进行地址识别、定位、跟踪,同时还可以检测出所附着物体的物理特征,如:温度、湿度、气体、位移等。

因此,无芯片RFID传感器可作为无源传感器节点组成的传感网络,广泛应用于农业、物流、智慧城市、环境监测等领域,正成为当前研究的热点。



技术实现要素:

为了克服现有技术存在的缺点与不足,本发明提供一种无芯片RFID湿度传感器。

本发明采用如下技术方案:

一种无芯片RFID湿度传感器,包括湿度敏感材料层、标签贴片单元、金属地板及介质基板,所述湿度敏感材料层覆盖在标签贴片单元表面,所述标签贴片单元位于所述介质基板的上表面,所述金属地板位于所述介质基板的下表面。

所述标签贴片单元由三个同轴正方形环嵌套构成,正方形环的周长按照由外到内的嵌套顺序依次递减。

所述三个同轴正方形环均开有切角结构及开口结构,所述切角结构位于三个同轴正方形环的主对角线上,并关于介质基板中心对称;所述开口结构位于三个同轴正方形环的副对角线上,并关于介质基板中心对称。

所述湿度敏感材料层为聚乙烯醇薄膜。

所述三个同轴正方形环的宽度均为0.3mm,相邻正方形环的间隔为0.7mm。

所述切角结构为正方形减去等边三角形构成。

所述湿度敏感材料层覆盖在最里面的正方形环表面。

标签贴片单元实现变极化功能,当垂直极化波入射到所述标签贴片单元表面时,在回波信号的水平方向分量上检测到谐振峰值。

本发明的有益效果:

(1)本发明提供一种工作于超宽带(Ultra-Wide Band,UWB)频段(3.1GHz-10.6GHz)可用于湿度传感的无芯片RFID标签。UWB是一种适用于短距离无线通信的无载波通信技术,具有系统容量大、传输速率高、功耗小等优点。当阅读器向标签发射一个线极化波作为询问信号时,不同尺寸的标签贴片单元可以在不同的频率点产生谐振,并且在交叉极化方向上相应频点处的雷达散射截面(Radar Cross-Section,RCS)产生谐振峰值。

(2)标签采用三个正方形环的嵌套结构,湿度敏感材料层覆盖在最里面的正方形环表面,当标签所处环境湿度发生变化时,覆盖湿度敏感材料层的标签贴片单元会产生相应的频率偏移,从而实现湿度传感。通过开口结构改变外面两个正方形环的枝节长度可以调节谐振峰位置,从而实现频移编码。这种方式可以在实现湿度传感的同时编码数据信息。

(3)本发明提供的标签实现了变极化技术,若有一个垂直方向的线极化波入射到该标签表面,可以通过检测水平方向的RCS分量来识别特定的编码,这样不仅可以简化检测时的校准过程,而且可以增加阅读器发射和接收天线的隔离度,提高抗干扰能力。

附图说明

图1是本发明结构的俯视图;

图2是本发明结构的侧视图;

图3是本发明结构的参数标注图;

图4(a)是本发明在交叉极化方向上的RCS幅度图;

图4(b)是本发明分别实现6-bit编码“001000”、“010000”和“011001”的RCS幅度图;

图5是本发明随着湿度增加,介电常数升高使得谐振频率向低频偏移的RCS幅度图。

具体实施方式

下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。

实施例

如图1及图2所示,一种无芯片RFID湿度传感器,工作于UWB频段(3.1GHz-10.6GHz),包括湿度敏感材料层5、标签贴片单元、金属地板6及介质基板1,所述介质基板为单层,所述湿度敏感材料层覆盖在标签贴片单元表面,所述标签贴片单元位于所述单层介质基板的上表面,所述金属地板位于所述单层介质基板的下表面。

所述标签贴片单元由三个同轴正方形环2、3、4嵌套构成,三个同轴正方形环的周长按照由外到内的嵌套顺序依次递减。所述三个同轴正方形环均开有切角结构及开口结构,所述切角结构位于三个同轴正方形环主对角线的两端上,并关于单层介质基板中心对称;所述开口结构位于三个同轴正方形环的副对角线的两端上,并关于单层介质基板中心对称,一个切角正方形环即为一个编码单元,主对角线与X轴夹角为钝角,副对角线与X轴夹角为锐角。

每个正方形环都会在高频处产生二次谐波,限制了标签的工作频段,三个环结构能够较充分利用频谱并且实现频移编码。如果环设置的过多,则会产生相互耦合,导致标签反向散射信号难以分辨出谐振点。

所述湿度敏感材料层为聚乙烯醇薄膜(PVA),具体位于嵌套在最里面的正方形环4的上表面,PVA材料的介电常数会随着环境湿度升高而升高,使得覆盖湿度敏感材料层的标签贴片单元产生相应的频率偏移,从而实现湿度传感。

所述标签贴片单元可以实现变极化功能,即当垂直极化波入射到所述标签贴片单元表面时,可以在回波信号的水平方向分量上检测到谐振峰值,通过开口结构改变环的枝节长度可以调节谐振峰位置,从而实现频移编码。

如图3所示,所述标签贴片单元中,位于最外层的正方形环2长度L1为11.6mm,中间层的正方形环3的长度L2为9.6mm,最内侧的正方形环4的长度L3为7mm。所述三个开口切角正方形环的宽度W均为0.3mm,环的间隔d2为0.7mm,标签贴片单元与介质基板的间隔d1为1mm。所述切角结构位于正方形环的主对角线上,并关于正方形贴片中心对称。切角结构是用正方形减去边长S为1mm的等边三角形构成。

本实施例中,所述介质基板为介质基板采用高频板材Taconic TLX-8,其相对介电常数为2.55,电损耗角正切值为0.0019。标签贴片单元所在的正方形介质基板长度L为15mm,厚度H为0.8mm。

如图4(a)所示,当有一个垂直方向的线极化波入射到本无芯片RFID湿度传感器表面时,可以在回波信号的水平方向(也即交叉极化方向)分量上的检测到雷达散射截面(RCS)谐振峰值,其中三个谐振波峰和图1中的标签贴片单元的正方形环2-4一一对应,可以通过调节正方形环2和3的长度L1、L2实现6-bit编码。当正方形环2和3的长度L1、L2分别为11.2mm和9.6mm时,标签编码为“001000”;当L1、L2分别为11mm和9.6mm时,标签编码为“010000”;当L1、L2分别为10.8mm和9.4mm时,标签编码为“011001”。如图4(b)所示,当位于外层的正方形环2的长度L1变化时,位于中间层的正方形环3产生的谐振频率几乎没有发生偏移,因此可以实现可靠的频移编码。本无芯片RFID湿度传感器的工作频段为UWB频段(3.1GHz-10.6GHz)。

PVA材料的介电常数会随着环境湿度升高而升高,使得覆盖湿度敏感材料层的标签贴片单元产生相应的频率偏移。如图5所示,为了模拟当湿度增大时,介电常数增加的情况,将湿度敏感材料层的介电常数ε设置为1.6、5、10,最终获得的RCS的谐振峰值向低频偏移。

该无芯片RFID湿度传感器具有成本低、抗干扰能力强、易于在实际环境中检测以及与同种类型无芯片湿度传感器相比有较大的编码容量等优点。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1