多维信息同步采集、定位与位置服务装置及系统和方法与流程

文档序号:15949043发布日期:2018-11-14 04:53阅读:429来源:国知局

本发明属于导航定位和位置服务领域,尤其涉及一种多维信息同步采集、定位与位置服务装置及系统和方法。具体涉及一种快速、高效、一体化采集室内空间几何结构、环境信息数据和室内泛在定位信号数据的装置和数据处理方法,以及一种低成本、高效率地开发、部署、维护室内导航定位与位置服务应用系统。

背景技术

现代生活中人和物的移动性越来越重要,对于多元化和个性化的位置信息服务需求也呈大幅度增长趋势。人们80%以上的时间生活、工作在室内,更有超过90%的人和物的信息位于室内。因此,对于基于室内定位技术的室内或室内外无缝导航和位置服务系统的需求越来越迫切。因此,众多国内外知名学术研究机构对室内定位技术展开了深入的研究。

目前,业内常用的现有技术是这样的:

室内位置服务需要室内地图,室内空间环境数据,和室内定位。目前这三类数据通常是用不同的技术,在不同的时间分开采集。采集需要专门的知识,繁琐的现场作业,极高的人力和设备成本,和大量的后期数据处理。采集的数据没有直接关联性,使用前需要对数据关联处理。数据采集和处理的低效率降低了位置服务部署的时效性和经济可行性。目前的具体技术描述如下。

室内地图制作通常采用地面激光扫描仪对室内三维空间进行扫描,得到三维点云,进而从中提取室内地图。为了部署室内导航和位置服务应用,需要专门采集室内地图制图数据和应用相关环境信息数据,包括室内激光扫描点云、物理环境数据等,这些数据往往需要专门设备在工作现场分别采集。为制作室内地图数据,需要对室内空间的空间几何结构进行三维扫描或测量,这个扫描或测量过程繁琐,耗费较多人力、时间和财力成本。物理环境数据也需要专门设备进行采集,采集过程只能一个位置一个位置进行。由于室内没有卫星导航信号,所采集的物理环境数据缺乏有效的地理位置参考,所采集的数据的后期必须通过人工的方式进行整理,形成带有地理空间标识的地理环境数据。为了避免扫描、测量和环境数据采集过程与室内空间正常的作业过程(如商场营业、机场运营)互相干扰,需要停止室内空间的正常作业过程以便进行数据采集,这会较长时间影响室内空间的正常运作,从而严重降低这类技术的可用性和市场接受程度。

室内定位的方法主要有蜂窝网络、红外、声音、超声波、蓝牙、无线局域网wifi、超宽带(uwb)、射频标签rfid和航迹推算dr法等。其中,航迹推算dr方法只能相对定位,确定相对位置,需要与其他定位手段融合提供导航定位和位置服务所需要的绝对位置。蜂窝网络定位的精度达数百米,不能满足室内位置服务的要求。基于红外、声音、超声波或射频标签rfid的定位技术所工作的区域较小,导致整体部署的系统成本较高;且易受环境的干扰影响,定位性能难以保证,系统维护的成本较高;需要专门的用户终端设备,推广难度较大。基于uwb的室内定位系统在定位准确度和系统能耗等方面都具有较好的实验室记录,是一种很有潜力的室内定位技术。但是uwb技术成本太高,在实际使用环境中由于多路径的影响,定位精度难以保证等,还有很多核心问题亟待解决。

由于移动互联网的普及,室内空间中广泛存在无线局域网wifi信号。精准营销等智能应用的普及,蓝牙ibeacon标准设备的广泛采用,使得在商场等室内空间中广泛存在蓝牙ibeacon信号。更重要的是,wifi和蓝牙模块已经是智能手机的标配,在不需要链接的情况下能够获取他们的信号强度等信息,能够用于定位。wifi和蓝牙等泛在信号定位技术成本低廉,不受用户数量限制,终端设备可以是手机或专门终端设备,功耗低,可用性高,因而获得了极大的关注和发展。

基于wifi或蓝牙信号的室内定位有多种方法,如基于wifi信号的到达时间差值tdoa、接收信号角度doa、接收信号相位poa、接收信号时间toa等,但这些方法需要专门的硬件设备,且存在可扩展性差以及定位时间过长等问题;此外,这些方法需要知道无线接入点(ap)的真实坐标信息,在系统部署过程中,由于是利用室内空间由其他利益攸关方部署的已有的wifi接入点,往往不知道他们的具体位置,使得这些方法难以实施。相比这些方法,基于wifi的rssi值的室内定位技术只需商用的智能手机和无线网络资源,易于实现且成本低廉,所以如今基于wifi的室内定位技术大都是利用rssi的。基于rssi的室内定位法又分为三角定位法与指纹匹配法。三角定位法的原理就是先确定至少3个ap的坐标信息,再利用信号传播模型将移动端接收到的rssi转化为移动端到这些ap的距离,只要获取移动端到ap的距离就能计算出该移动端的位置。然而这种方法受室内环境干扰太多,也极度依赖于无法准确定义的信号传播模型,所以精度和稳定性都有所限制,无法推广使用。

不同于三角定位法,指纹匹配法是通过识别位置的信号特征定位所以有受室内环境干扰较小,不用依赖于信号传输模型,无需知道ap位置等优点。指纹匹配法分为两个阶段:一是指纹训练阶段,二是匹配定位阶段。指纹阶段主要用于建立待定位区域的rssi指纹库,匹配定位阶段通过比较移动端实时接收到的rssi值与指纹库中的rssi指纹来估算移动端的位置,因此定位精度很大程度取决于rssi指纹库的质量,然而高精度、高密度的指纹库会耗费大量计算资源和人力资源,且采集指纹库的过程需要在现场作业较长时间人工操作,人力负担较重,可能会影响某些场景的正常运作(比如商场的正常营业),从而导致降低了该方法的可用性和市场接受程度。

综上所述,现有技术存在的问题是:

(1)现有技术,高精度定位系统需要特制的硬件,整个系统的成本很高。

(2)现有的技术,室内导航和位置服务所需要的各类元素,如地图、室内空间环境信息、室内定位基础数据等,由不同的设备分别采集,采集过程繁琐,采集效率低;

(3)上述各类元素采集过程没有做到移动式采集,采集过程缺乏精确的地理位置参考,采集过程和后期的数据处理自动化程度较低。

(4)泛在信号指纹库数据的采集过程自动化程度较低、采集过程繁琐、耗时,是影响指纹匹配室内定位技术应用普及的主要因素。

解决上述技术问题的难度和意义:

解决现有技术问题的难度:室内导航和位置服务所需要的各类元素,如地图、室内空间环境信息、室内定位基础数据等,由不同的设备分别采集,目前没有集成的装置能够同步采集所有这些数据。在室外空间,卫星定位技术能够为移动测量系统连续提供精密参考位置,但是卫星定位技术在室内不可用,使得移动测量系统在室内没有精密地理标签,因此地图、物理环境数据和室内泛在定位基础数据难以通过移动测量方式采集,以提高数据采集和处理的效率和自动化程度,从而使得泛在定位方法和相应的导航和位置服务应用难以被市场接受。

在传统方法中,指纹特征库的精确程度与指纹特征库训练点的地理位置标签的精确程度密切相关;要提高指纹特征库的精确度,则要求知道指纹库训练参考点的精密坐标,在室内空间缺乏有效手段去获取参考点的精密坐标,使得整个定位系统的部署、维护、更新费时费力,成本增加。因此在传统方法中,提高指纹库的精确程度与降低系统的成本成为一对矛盾;

解决现有技术问题带来的意义:室内导航和位置服务所需要的各类元素,如地图、室内空间环境信息、室内定位基础数据等,通过移动测绘的方式同步采集,极大地提高了采集作业效率和数据处理自动化程度,减少室内导航和位置服务应用部署、维护和更新的成本,提高效率,增加导航和位置服务应用的可用性。指纹匹配定位过程中,指纹特征库采样数据的地理位置标签的精确程度决定了定位结果的精度;指纹库数据的采集过程自动化程度和采集过程的效率(如单位面积所需要的采集时间)且不影响室内空间相关主要功能的正常运行,显著提升该方法的可用性,大大降低系统部署和实际运行的,使得基于该方法开发商业应用系统变得切实可行,能够为市场接受。



技术实现要素:

针对现有技术存在的问题,本发明提供了一种多维信息同步采集、定位与位置服务装置及系统和方法。

本发明是这样实现的,一种多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法,包括:

(1)利用本发明装置扫描数据自主确定移动扫描过程中的本装置的空间位置;

(2)利用本发明装置扫描数据重构室内空间几何结构,生成导航和位置服务应用所需要的二维或三维地图;

(3)利用本发明装置扫描数据重构室内空间物理环境信息,并利用本装置的空间位置为重构的环境信息提供参考位置;

(4)采集室内空间泛在定位信号数据,并利用本装置的空间位置重构泛在定位信号特征的地理分布或计算信号源的空间位置,构建室内定位基础信息数据库,用于导航和位置服务应用中确定手机或其他移动设备的位置;

其他移动设备包括手持移动设备、背包可穿戴便携设备、移动推车设备和自主移动无人车设备等形态。

进一步,室内空间物理环境信息包括环境视觉数据和环境物理属性数据,用于重构室内空间的视觉和物理环境。

进一步,所述的多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法具体包括:

步骤1、将移动测绘装置放置于待测绘区域,进行传感器初始化操作;

步骤2、在待测绘区域操作本发明移动测绘装置,对室内空间进行测绘,记录传感器数据;

步骤3、在移动测绘过程中,利用内置的数据处理软件在线处理数据,确定移动装置的位置和作业轨迹,在线监测移动测绘数据的范围和质量,在显示设备可视化;

步骤4、部分或全部作业区域完成后,将数据上传至数据处理电脑;

步骤5、处理所采集的数据,确定测绘作业过程中的位置轨迹;

步骤6、生成室内空间移动扫描点云,生成所测绘区域的二维和三维地图;

步骤7、处理泛在定位信号数据,用步骤5得到的位置标定数据空间位置,生成泛在信号定位特征库或定位信标源的位置,用于泛在信号定位计算;

步骤8、处理同步测绘的视觉和物理环境数据,从数据中提取相关信息,并用步骤5得到的位置标定数据和信息空间位置;

步骤9、输出地图、泛在定位信号特征或定位信标源的位置、视觉和物理环境空间信息多维空间信息数据,用于导航和位置服务应用。

本发明的另一目的在于提供一种利用所述多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法的多传感器集成的室内空间多维信息同步移动测绘装置,所述多传感器集成的室内空间多维信息同步移动测绘装置包括:

测绘传感器:用于移动测绘室内多维空间信息,包括:激光扫描仪、深度相机、惯导传感器、卫星导航接收机、wifi信号接收模块、蓝牙信号接收模块、地磁测量模块、相机、摄像头、红外传感器;这些传感器共享电源模块,通过供电电路为每个传感器提供合适的供电电压和功率。激光扫描仪通过usb连接线或网线与数据处理单元相连,根据连接口自适应选择;深度相机通过usb连接线连接数据处理单元;惯导传感器由usb连接线与数据处理单元连接;卫星导航接收机通过其专有的数据线与数据处理单元相连;wifi信号接收模块、蓝牙信号接收模块和地磁测量模块集成到专门电路板上并连接到微控制单元,通过微控制单元与数据处理单元连接;相机通过usb数据线与数据处理单元相连;摄像头通过usb数据线与数据处理单元相连;红外传感器由usb数据线与数据处理单元相连。这些传感器通过同步设备相连并对传感器数据进行时间同步。不同的传感器通过微控制器将数据传输计算处理单元集中处理。

多传感器同步设备:用于多种传感器观测数据的时间同步和对齐;

数据处理单元:综合处理测绘传感器数据,生成移动测绘装置自身定位、地图生成、泛在定位信号特征提取或定位信标源的位置确定、视觉和物理环境空间信息生成数据处理;包括内置安装于移动测绘装置上的第一数据处理模块和安装于数据处理电脑上的第二数据处理模块;

移动装置云台:用于维持内置的多传感器的空间姿态和稳定性;

计算处理单元:用于运行数据处理单元的计算;

电源:为测绘传感器、多传感器同步设备、数据处理单元、移动装置云台、计算处理单元供电;

显示设备:用于可视化移动测绘时实时计算的结果;

数据记录存储设备:记录、存储移动测绘的数据媒介。

本发明的另一目的在于提供一种利用所述多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法的移动设备室内导航和位置服务系统,所述移动设备室内导航和位置服务系统包括:

移动设备:导航与位置服务的用户终端,通过定位该终端确定用户的位置;

室内和室外地图:用于室内或涵盖室内和室外空间的导航和位置服务;

室内定位和室内外无缝定位引擎:定位引擎确定移动设备用户终端的位置;根据应用场景,定位引擎可在室内空间定位或在室内和室外空间无缝定位;

定位终端数据采集模块:采集泛在定位信号、惯性传感器数据等,用于确定用户实时位置;

导航和位置服务兴趣点数据库:内嵌在在移动设备或后台服务器导航与位置服务的后台服务器,用于提供导航和位置服务数据;

导航与位置服务的后台服务器:用于提供导航地图、运行定位引擎、定位基础数据库、空间环境信息数据、兴趣点信息数据以及与用户终端移动设备的通信连接;

数据记录存储设备:用于记录、存储导航,还用于相关的地图、定位、兴趣点和应用数据的位置服务。

本发明的另一目的在于提供一种实现所述的移动设备室内导航和位置服务系统的移动设备室内导航和位置服务方法,所述移动设备室内导航和位置服务方法包括:

步骤一、利用多传感器集成的室内空间多维信息同步移动测绘装置,通过多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法步骤,同步采集室内空间多维数据,包括空间几何结构数据、空间物理环境信息数据和室内定位信号基础数据;

步骤二、按照多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法步骤,计算在移动数据采集过程中的位置轨迹,并利用该位置标定所采集的室内空间多维数据,生成导航与位置服务应用所需要的地图、兴趣点信息、物理环境信息和泛在定位基础数据相关数据;

步骤三、部署导航与位置服务的后台服务器,配置导航和位置服务兴趣点、环境信息数据库应用相关的数据资源,配置泛在定位基础数据;

步骤四、在移动设备用户终端部署泛在定位信号数据采集模块,依据应用场景,在用户终端或服务器端部署室内定位引擎或室内外无缝定位引擎;建立移动设备用户终端和服务器的通信连接,在用户终端和后台服务器之间配置数据资源和计算资源;

步骤五、启动导航定位与位置服务应用;用户搭载定位终端数据采集模块在所移动空间使用导航定位和相关的位置服务应用。

本发明的另一目的在于提供一种实现所述移动设备室内导航和位置服务方法的基于手机端的室内导航应用和基于位置的信息服务系统。

本发明的另一目的在于提供一种实现所述移动设备室内导航和位置服务方法的基于服务器的人员位置监控系统。

本发明的另一目的在于提供一种实现所述多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法的计算机程序。

本发明的另一目的在于提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行所述的多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法。

综上所述,本发明的优点及积极效果为

本发明提供了一种为大型室内空间(如商场和机场)部署、维护和更新室内导航与位置服务应用的装置、系统和数据处理方法。该装置集成有多种传感器,通过移动同步测绘的方式一次性采集室内空间多种数据,包括空间几何结构数据、空间物理环境信息数据和室内泛在定位信号基础数据;通过数据处理,获得移动测绘过程中装置自身的位置,利用该位置为所采集的所有数据提供地理位置参考标签;通过数据处理,生成室内导航与位置服务应用相关的数据,包括地图、室内空间环境信息、兴趣点信息、室内定位基础数据等;利用室内泛在定位信号基础数据为终端用户移动设备提供室内定位,形成一套室内导航与位置服务应用系统。

因此,本发明的积极效果有:

(1)多维数据的一体化采集,提高数据采集和处理的效率,减少现场数据采集的时间和人力成本。如表1所示,现场数据采集和处理的时间缩小为传统方法的1/20。

(2)提高了数据处理的精度和一致性。如表1所示,传统方法中不同的数据采用的设备不同,采集方法不一致,导致不同类型或不同设备的数据的坐标系统不一致,数据精度也不一致,降低了位置服务的质量。本发明方法发明了多维数据采集设备,不同类型的数据同步采集,使用统一的坐标系统,且具有高精度位置坐标。

(3)提高了位置服务系统部署的时效性。采用本发明,从数据采集到服务系统上线,可以在4小时完成,这使得部署时效性敏感(如临时性布展的展览会)的位置服务系统成为可能。

终端用户移动设备包括手机、平板电脑、手环或其他移动终端。本发明提供了一套室内空间导航与位置服务应用建设、部署、维护和更新的完整技术解决方案,本方案以移动测绘的方式提高现场作业效率,具有高可用性,系统数据采集、应用维护和更新的成本低。

表1.以1万平米室内空间为例,位置服务所需的地图数据、环境数据和泛在定位信号数据采集和处理时间、数据精度对比(以一天工作8小时计算)。

附图说明

图1是本发明实施例提供的多传感器集成多多传感器集成的室内空间多维信息同步移动测绘装置示意图。

图2是本发明实施例提供的本发明实施例提供的移动设备室内导航和位置服务方法法流程图。

图3是本发明实施例提供的基于室内空间多多传感器集成的室内空间多维信息同步移动测绘装置的泛在信号室内定位方法流程图。

图4是本发明实施例提供的对单线激光扫描仪组成的slam系统进行精度评定,最后的精度评价结果图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

本发明同步采集并生成室内导航和位置服务所需的多维信息数据,包括导航和位置服务地图,室内空间环境信息及其地理位置参考,以及室内定位所需的泛在定位信号数据及其地理位置标注,重构泛在定位信号特征的地理分布或计算信号源的空间位置,构建室内泛在定位基础信息数据库,提供了一套面向手机或其他移动设备室内空间导航与位置服务应用建设、部署、维护和更新的完整技术解决方案。本发明以移动测绘的技术和方法提高导航和位置服务数据采集现场作业效率,具有高可用性,显著降低数据采集、应用维护和更新的成本。

一,下面结合多传感器集成的室内空间多维信息同步移动测绘装置对本发明作进一步描述。

图1是本发明实施例提供的多传感器集成多多传感器集成的室内空间多维信息同步移动测绘装置,包括:

测绘传感器:用于移动测绘室内多维空间信息,包含下列全部传感器或部分传感器的任意组合:激光扫描仪、深度相机、惯导传感器、卫星导航接收机、wifi信号接收模块、蓝牙信号接收模块、地磁测量模块、相机、摄像头、红外传感器;

多传感器同步设备和软件:上述多种测绘传感器之间的同步设备及相应的数据处理软件,用于多种传感器观测数据的时间同步和对齐;

数据处理软件:综合处理上述测绘传感器数据,生成移动测绘装置自身定位、地图生成、泛在定位信号特征提取或定位信标源的位置确定、视觉和物理环境空间信息生成等数据处理;数据处理软件包含内置安装于移动测绘装置上的软件和安装于数据处理电脑上的软件两部分;

移动装置云台:用于维持本发明移动测绘装置所内置的部分或全部传感器的空间姿态和稳定性;

计算处理单元:用于运行上述数据处理软件和同步软件的计算单元;

电源:为移动测绘装置供电的电源;

显示设备:移动测绘装置的显示设备,用于可视化移动测绘时实时计算的结果;

数据记录存储设备:记录、存储移动测绘的数据媒介。

还包括:

同步扫描室内空间多维信息,包括空间几何结构、空间环境信息和泛在定位信号数据,或这些数据的部分组合。这些数据用于重构室内空间几何结构、室内空间物理环境信息,生成二维或三维地图,构建室内定位基础信息数据库,用于导航与位置服务应用。

该装置集成了多种传感器,包含下列全部传感器或部分传感器的组合:激光扫描仪、深度相机、惯导传感器、卫星导航接收机、wifi信号接收模块、蓝牙信号接收模块、地磁测量模块、相机、视频摄像头、红外传感器。

该装置利用其自身集成的传感器数据,以实时或事后处理的方式确定该装置自身在移动数据采集过程中的位置,包含在水平面的二维位置、垂直方向的高度和空间三维位置,无论这些位置的坐标系定义。

该装置在移动过程中采集室内空间泛在定位信号数据,利用该装置自身的位置标定这些泛在定位信号数据,重构泛在定位信号特征的地理分布或计算信号源的空间位置,构建室内定位基础信息数据库,用于导航和位置服务应用中确定手机或其他移动设备的位置。

该装置采集多种数据描述室内空间几何结构,利用该装置自身的位置标定这些空间几何结构数据,重构室内空间三维模型、或生成室内空间地图,用于导航和位置服务应用。地图形态包含二维平面地图和三维地图。

该装置采集空间物理环境信息数据,利用所述的该装置自身的位置标定这些空间环境数据,包括环境视觉数据和环境物理属性数据,重构室内空间的视觉和物理环境。

该装置的形态包括手持设备,背包等可穿戴便携设备,移动推车设备,和自主移动无人车设备等。

该装置能工作于室内空间,也能工作于室外空间,在室内外空间进行无缝一体化多维空间信息同步移动测绘。

二,下面结合多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法对本发明作进一步描述。

本发明实施例提供的多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法,包括:

步骤1、将本发明移动测绘装置放置于待测绘区域,进行传感器初始化操作;

步骤2、在待测绘区域操作本发明移动测绘装置,对室内空间进行测绘,记录传感器数据;

步骤3、在移动测绘过程中,本发明装置内置的数据处理软件在线处理数据,确定移动装置的位置和作业轨迹等,在线监测移动测绘数据的范围和质量,在显示设备可视化;

步骤4、部分或全部作业区域完成后,将数据上传至数据处理电脑;

步骤5、处理所采集的数据,确定移动装置测绘作业过程中的位置轨迹;

步骤6、生成室内空间移动扫描点云,生成所测绘区域的二维和三维地图;

步骤7、处理泛在定位信号数据,用步骤5得到的移动装置位置为这些数据标定空间位置,生成泛在信号定位特征库或定位信标源的位置,用于泛在信号定位计算;

步骤8、处理同步测绘的视觉和物理环境数据,从数据中提取相关信息,并用步骤5得到的移动装置位置为这些数据和信息标定空间位置;

步骤9、输出定位、地图、泛在定位信号特征或定位信标源的位置、视觉和物理环境空间信息等多维空间信息数据,用于导航和位置服务应用。

三,下面结合移动设备室内导航和位置服务方法对本发明作进一步描述。

本发明实施例提供的移动设备室内导航和位置服务方法,利用所述的基于室内空间多维信息同步移动测绘装置快速、高效地采集数据构建的室内地图数据、空间环境数据和移动设备室内定位方法,提供室内导航、室内和室外无缝导航,和基于位置的服务。

依据具体的应用场景,导航定位和位置服务可以部署在移动设备端,也可以部署在服务器端。

如图2,本发明实施例提供的移动设备室内导航和位置服务方法流程图。

本发明实施例提供的移动设备室内导航和位置服务方法,包括:

步骤1、利用多多传感器集成的室内空间多维信息同步移动测绘装置,通过多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法所述步骤,同步采集室内空间多维数据,包括空间几何结构数据、空间物理环境信息数据和室内定位信号基础数据。如果相关应用不需要某些数据,或某些数据可以通过其他途径获得,这一步可以不采集这些数据。

步骤2、按照多传感器集成的室内空间多维信息同步移动测绘装置的数据处理方法所述步骤,计算装置在移动数据采集过程中的位置轨迹,并利用该位置标定所采集的室内空间多维数据,生成导航与位置服务应用所需要的地图、兴趣点信息、物理环境信息和泛在定位基础数据等相关数据。如果相关应用不需要某些数据,或某些数据可以通过其他途径获得,这一步可以不采集这些数据。

步骤3、部署导航与位置服务的后台服务器,配置导航和位置服务兴趣点、环境信息数据库等应用相关的数据资源,配置泛在定位基础数据。

步骤4、在移动设备用户终端部署泛在定位信号数据采集模块,依据应用场景设计,在用户终端或服务器端部署室内定位引擎或室内外无缝定位引擎。建立移动设备用户终端和服务器的通信连接,在用户终端和后台服务器之间合理配置数据资源和计算资源。

步骤5、启动导航定位与位置服务应用。用户搭载定位终端数据采集模块在所移动空间使用导航定位和相关的位置服务应用。

四,下面结合基于室内空间多多传感器集成的室内空间多维信息同步移动测绘装置的泛在信号室内定位方法对本发明作进一步描述。

如图3所示,本发明实施例提供的基于室内空间多多传感器集成的室内空间多维信息同步移动测绘装置的泛在信号室内定位方法,

利用所述的基于室内空间多维信息同步移动测绘装置快速、高效地采集数据构建的室内定位基础信息数据库和移动设备采集的泛在定位信息,确定移动设备的位置。

适用于移动设备,包括但不限于:手机、平板电脑、笔记本电脑、个人数据助理终端或其他类型的移动设备。

本发明实施例提供的基于室内空间多多传感器集成的室内空间多维信息同步移动测绘装置的移动设备室内定位方法,室内定位与卫星导航等室外定位技术集成融合,能够进行室内和室外区域无缝定位。

五,下面结合移动设备室内导航和位置服务系统对本发明作进一步描述。

本发明实施例提供的移动设备室内导航和位置服务系统,包括以下组成部分:

移动设备:导航与位置服务的用户终端,系统通过定位该终端从而确定用户的位置。

室内和室外地图:导航与位置服务应用的地图,根据具体应用场景,可以仅有室内地图,也可以是涵盖室内和室外空间的综合地图。

室内定位和室内外无缝定位引擎:定位引擎确定移动设备用户终端的位置。根据具体应用场景,定位引擎可以仅在室内空间定位,也可以在室内和室外空间无缝定位。

室内空间环境信息数据:与导航和位置服务应用相关的空间环境信息数据和空间属性数据。

定位终端数据采集模块:在定位阶段采集泛在定位信号、惯性传感器数据等,用于确定用户实时位置。

导航和位置服务兴趣点数据库:与导航和位置服务应用相关的兴趣点数据库。该数据库可以存在于移动设备,也可以存在于后台服务器。

导航与位置服务的后台服务器:为导航和位置服务应用提供后台支撑的服务器,其功能包括但不限于提供导航地图、运行定位引擎,提供定位基础数据库,提供空间环境信息数据,提供兴趣点信息数据,应用相关的其他服务器功能,以及与用户终端移动设备的通信连接。

移动设备与后台服务器通信连接:移动设备与后台服务器的通信连接。

数据记录存储设备:记录、存储导航与位置服务应用相关的地图、定位、兴趣点和应用数据媒介。

六,下面结合移动设备室内导航和位置服务应用系统,应用系统对本发明作进一步描述。

本发明实施例提供的移动设备室内导航和位置服务应用系统,应用系统的形态包括:

1)以客户端移动设备为中心的应用形态,比如基于手机端的室内导航应用和基于位置的信息服务;

2)以网络服务器端为中心的应用形态,比如基于服务器的人员位置监控应用

七,下面结合具体实施例对本发明作进一步描述。

下面以开发商场的智能导购应用为例,描述本发明提供的为大型室内空间部署、维护和更新室内导航与位置服务应用的装置的使用和数据处理方法,以及商场智能导购应用系统的开发过程。

商场环境中室内空间体量大,人流量多,对室内导航导购位置服务有很大需求。商场的购物环境、布局等经常变化,需要定期或不定期对商场的空间环境进行扫描,确保导航导购位置服务的地图、兴趣点和商场空间环境信息等是最新的和有效的。

在商场进行采集数据以及维护、更新导航导购位置服务应用需要满足两个要求:1)数据采集、维护更新过程不能影响商场的正常营业;2)现在作业过程所使用的设备装置不能对人体(本例中包括商场的工作人员和顾客)造成伤害或干扰。否则,将大大降低相关装置和技术的可用性和被用户(本例中为商场运营者)接受的可能性。

本发明提供的装置集成多种传感器,包括深度相机,光学rgb相机,惯性导航和wifi信号采集模块,另有微控制单元执行嵌入式计算和不同传感器之间的时间同步处理。

确定要建立导航和位置服务应用的商场室内空间后,进行现场踏勘,根据室内空间的拓扑结构规划在室内数据采集的路径。然后,一个操作人员手持本发明装置,沿着规划好的路径行走,同步采集多种传感器数据。本发明装置内置的微控制单元实时处理深度相机和惯性导航传感器数据,运行基于深度相机点云的同步定位与测图(slam)算法软件,生成并可视化所行走的轨迹。同时本装置预处理采集的其他传感器数据,通过时间同步,为不同传感器的数据添加地理位置标签。这样,操作人员在现场采集的过程中可实时查看不同传感器数据在不同的空间位置的状态信息,比如在不同空间位置所采集的wifi信号的状态,并判断每个位置所采集的wifi泛在定位信号基础数据质量是否满足要求,减少后处理发现数据质量不好时的重新返工复测的要求。

现场数据采集完成后,将数据从本发明装置中到处到数据处理计算机,对数据进行预处理,运行同步定位与测图(slam)算法软件,进行同步定位与测图后处理计算,提高定位与测图的精度、完整性和可靠性,并以新的移动数据采集时位置为不同传感器的数据添加地理位置标签。根据装置采集的传感器数据和相应的地理位置标签,生成相应的导航与位置服务应用数据,如从深度相机点云生成室内地图、从光学相机图片生成室内空间全景图或从图片中提取出的兴趣点位置(如某一品牌的商铺)和室内空间环境信息、从wifi模块数据生成wifi泛在定位信号基础数据特征库等。

生成相应的导航与位置服务应用数据后,建立相应的应用相关数据库服务器和系统。以手机为平台,开发商场导购位置服务应用,建立起手机客户端和服务器端的数据连接,实时通信获取或更新相关服务相关数据。手机客户端采用手机内置的wifi模块采集商场空间的wifi信号数据,以本发明装置采集并经过处理生成的wifi泛在定位信号基础数据特征库为指纹库,采用指纹匹配的原理,确定手机和用户的当前位置。以用户的当前位置为基础,提供用户商场导航、导购和位置服务。比如,利用该服务,购物者可以发现他或她自己所在的位置,确保在商场购物时不迷路,并将该位置分享给他或她的同伴;购物者可以发现某品牌的商品,并通过路径引导功能将购物者引导到该商品所在的位置;商家可以根据用户的购物偏好,当购物者位于某些区域时,有针对性的给购物者推送相关商品的信息,实现精准营销。

下面结合具体效果对本发明作进一步描述。

作为本发明的一个实证,本发明集成了激光扫描仪,imu传感器和手机平台。这些传感器或设备固定在同一个硬件平台上,通过时间同步集成不同传感器的数据,在移动过程中同时采集不同传感器的数据进行处理。因此,当操作员手持本方面装置进行移动激光扫描完成时,其他类型数据也完成采集,无需进行二次采集操作,只需用slam的结果对数据标定位置。

其中,激光扫描仪和imu结合完成同步定位与测图(slam)处理,得到室内空间的点云数据,用于生成室内地图;同时得到在移动扫描过程中的位置轨迹,通过时间同步,该位置轨迹用来标定固定在移动平台上的手机泛在信号数据。

本发明对单线激光扫描仪组成的slam系统进行精度评定,最后的精度评价结果如图4所示。结果显示,本发明的slam绝对定位精度优于10厘米。用slam的定位结果为手机采集的泛在定位信号进行位置标定,精度也优于10厘米。

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(dsl)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输)。所述计算机可读取存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,dvd)、或者半导体介质(例如固态硬盘solidstatedisk(ssd))等。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1