基于边缘滤波和时分复用的光纤光栅传感解调系统及方法与流程

文档序号:16676628发布日期:2019-01-18 23:59阅读:278来源:国知局
基于边缘滤波和时分复用的光纤光栅传感解调系统及方法与流程

本发明涉及一种基于边缘滤波和时分复用的光纤光栅传感解调系统及方法。



背景技术:

光纤传感技术是随着光纤及光纤通信技术的发展而迅速发展起来的一种以光为载体,光纤为媒质,感知和传输外界信号(被测量)的新型传感技术。光纤光栅是典型的光纤传感器件之一,其中心波长和温度及施加在光栅上的应力变化有很好的线性关系,这种线性关系使得光纤光栅可以作为性能优良的光纤传感元件,实现准分布式传感。目前基于光纤光栅传感器的技术发展趋势为:一方面,光纤光栅传感系统的传感器种类日益丰富,传感能力极大增强,系统规模不断扩大;另一方面,光纤传感系统日趋复杂,正全面向大容量网络化方向发展,光纤传感系统的信息处理技术与管理能力难以满足当前灵活多样的工程应用需求,对光纤传感网络的信息处理功能提出了新的要求。

光纤光栅传感器的信号解调方法主要包括干涉法、色散法、衍射法、滤波法等几大类。干涉解调是将光纤光栅波长偏移量转化为相位变化来检测被测波长,主要包括michelson干涉法、m-z干涉仪法和sagnac干涉仪法。其中,michelson干涉解调法的解调方案能进行静态和动态测量,精度较高、体积小、测量速度也比较快但是受环境影响也比较大;非平衡mach-zehnder干涉法分辨率高,但却受环境影响较大,不适用于静态测量,且传感网络容量小;sagnac干涉仪法仅适用于单个传感器的测量。色散法特点是速度快、精度高,适于分布式传感系统的高速测量,但是系统的波长分辨力受多个因素的影响;衍射法的波长解调精度较高和稳定性也不错,但是同样对光波分辨率的影响因素比较多,易受温度影响,不利于应用。滤波法又可细分为边缘滤波法、可调谐滤波器法、可调谐波长光源法。单一的边缘滤波和可调谐滤波器法传感器容量小,可调谐波长光源法结构复杂,系统成本高。

目前基于波分复用多通道和时分复用弱反射光栅的大容量光纤光栅传感技术已得到一定的发展,但仍存在系统结构复杂、成本高、解调频率低等相关的技术瓶颈。



技术实现要素:

本发明为了解决上述问题,提出了一种基于边缘滤波和时分复用的光纤光栅传感解调系统及方法,本发明能够实现光纤光栅传感器的大容量布置和高频信号解调问题,可在一根光纤上实现大容量光纤光栅传感器的解调,适合于对传感器布设结构要求较高和高频信号解调的场合。

为了实现上述目的,本发明采用如下技术方案:

一种基于边缘滤波和时分复用的光纤光栅传感解调系统,包括光源单元、传感单元和处理单元,所述光源单元包括多个不同中心波长的光纤f-p激光器,发送的各个中心波长的激光信号通过一根光纤进入环形器;

所述环形器一方面将合束后的激光注入到传感单元,所述传感单元包括多组依次串联的传感阵列,每组传感阵列包括与不同中心波长对应的多个串联的光纤光栅,各传感阵列之间通过时分延迟光纤连接;

所述环形器另一方面接收传感单元反馈的光信号,并将入射光的不同波长分离后传输给处理单元,所述处理单元对不同波长的光信号进行放大和边缘滤波,根据信号返回时间对同一波长类型光纤光栅传感阵列进行解调。

进一步的,所述光源单元包括光纤f-p激光器驱动器和四个不同中心波长的光纤f-p激光器,所述光纤f-p激光器驱动器驱动各个光纤f-p激光器产生激光信号。

进一步的,作为一种方案,各个光纤f-p激光器中心波长分别设定为1510nm、1530nm、1550nm和1570nm。

进一步的,所述环形器连接第一波分复用分束器和第二波分复用分束器,各中心波长的激光信号通过第一复用分束器整合到单根光纤中进入环形器,所述第二波分复用分束器接收到环形器的入射光,并将入射光的四个不同波长分离。

进一步的,所述传感单元包括波长不同的各种光纤光栅阵列和时分延迟光纤,每个光纤光栅阵列的光纤光栅的波长不同,且每个波长的设定值处在对应光纤f-p激光器的光谱边沿上,各个时分延迟光纤分别设置于各光纤光栅阵列之间。

更进一步的,每个光纤光栅阵列的光纤光栅为波长相同的低反射率光纤,反射率的大小与所需传感器的数目相关。

更进一步的,所述时分延迟光纤的长度取决于电路系统的采集频率,使得每个中心波长相同的光纤光栅之间有一定的距离。

进一步的,所述处理单元包括多个并列的处理支路以及同步采集器和控制器,每个处理支路包括连接的光电探测器和放大滤波器,所述光电探测器分别接收不同波长的分离后的信号,所述放大滤波器连接光电探测器,各个放大滤波器均连接同步采集器,所述同步采集器连接控制器。

更进一步的,所述控制器对光源单元的各个光纤f-p激光器驱动器和各个处理支路的同步动作。

基于上述分布式光纤光栅传感解调系统的工作方法,同步驱动与控制各个不同中心波长的光纤f-p激光器发射激光信号,将不同中心波长的光纤f-p激光器输出的信号光整合到一根光纤送入环形器,环形器一方面将波分复用合束器整合后的光信号注入到传感系单元,另一方面将传感单元的反射信号分离出来传输给处理单元,对不同波长的光信号进行放大和边缘滤波,根据信号返回时间对同一波长类型光纤光栅传感阵列进行解调。

与现有技术相比,本发明的有益效果为:

(1)采用多个光纤f-p激光器构成的光源系统相比于扫频激光器大大降低了成本,且通过电路系统的同步控制,提高了信号的解调频率;

(2)在单根光栅上可依据波分和时分复用技术分布大容量传感器;

(3)电路系统对光源系统的同步控制和对传感系统的同步采集可使信号解调频率达几khz乃至数十khz以上;

(4)通过边缘滤波和时分复用技术的结合,可以实现在单根光纤上大容量分布的光纤光栅传感阵列的高频解调。

附图说明

构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。

图1为本实施例的结构示意图;

图2为本实施例的光纤f-p激光器示意图;

图3为本实施例的光纤光栅中心波长与对应的光纤f-p激光器的光谱关系示意图;

其中:1、光源系统,2、光路系统,3、传感系统,4、电路系统;

(1-2)、(1-3)、(1-4)和(1-5)、光纤f-p激光器;

(2-1)、波分复用合束器,(2-2)、环形器,(2-3)、波分复用分束器;

(3-1)、(3-2)、(3-3)和(3-4)、光纤光栅;

(3-5)和(3-10)、时分延迟光纤;

(4-1)、(4-2)、(4-3)和(4-4)、光电探测器;

(4-5)、(4-6)、(4-7)和(4-8)、放大滤波器;

(4-9)、同步采集器;

(4-10)、嵌入式系统;

具体实施方式:

下面结合附图与实施例对本发明作进一步说明。

应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

在本发明中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本发明各部件或元件结构关系而确定的关系词,并非特指本发明中任一部件或元件,不能理解为对本发明的限制。

本发明中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本发明中的具体含义,不能理解为对本发明的限制。

如图1所示,基于边缘滤波和时分复用的高频分布式光纤光栅传感解调系统,可在单根光纤上利用波分复用和弱反射光栅的技术实现大容量的光纤光栅传感器复用。设计方案包括:光源系统(1)、光路系统(2)、传感系统(3)以及电路系统(4)。

具体的,光源系统(1)由(1-2)、(1-3)、(1-4)、(1-5)4个不同中心波长的光纤f-p激光器构成,由光纤f-p激光器驱动器(1-1)实现激光器的功率和温度控制,如图2所示。

光路系统(2)由波分复用合束器(2-1)、环形器(2-2)和波分复用分束器(2-3)组成。其中波分复用合束器(2-1)将(1-2)、(1-3)、(1-4)、(1-5)4个不同中心波长光纤f-p激光器的输出光合并到一个光纤中;环形器(2-2)一方面将合束后的激光注入到传感系统(3),另一方面将传感系统(3)返回的光转入到波分复用分束器(2-3);波分复用分束器(2-3)接收到环形器(2-2)的入射光,并将入射光的四个不同波长分离。

传感系统(3)由波长不同的四种光纤光栅阵列和时分延迟光纤组成,其中光纤光栅(3-1)、(3-2)、(3-3)、(3-4)为不同波长,每个波长的设定依据边缘滤波原理使其处在对应光纤f-p激光器(1-2)、(1-3)、(1-4)、(1-5)的光谱边沿上;光纤光栅(3-1)、(3-6)、(3-11)为波长相同的低反射率光纤,反射率的大小与所需传感器的数目相关;时分延迟光纤(3-5)、(3-10)用作各光纤光栅阵列之间,其长度取决于电路系统(4)的采集频率;其中光纤光栅中心波长与对应的光纤f-p激光器的光谱之间的关系如图3所示。

电路系统(4)由光电探测器((4-1)、(4-2)、(4-3)和(4-4))、放大滤波器((4-5)、(4-6)、(4-7)和(4-8))、同步采集(4-9)和嵌入式系统(4-10)组成。光电探测器(4-1)、(4-2)、(4-3)和(4-4)用于探测波分复用分束器分离出的各个通路的光信号;放大滤波器((4-5)、(4-6)、(4-7)和(4-8))和同步采集(4-9)实现信号的放大、滤波和采集;嵌入式系统(4-10)一方面对光源系统(1)和电路系统(4)进行同步控制,另一方面,对采集的信号进行数据处理。

作为一种实施方式,设定光纤f-p激光器的功率为2mw,3db带宽2nm,光纤光栅的反射率为3%左右,系统传感网络可达数百只以上。

设定同步采集(4-9)的采集频率为100mhz,时分延迟光纤(3-5)和(3-10)等的长度为10米,同步采集控制为20khz,系统解调频率可达10khz。

本实施例提供的基于边缘滤波和时分复用的高频分布式光纤光栅传感解调系统由多波长光纤f-p激光器组成的光源系统、由波分复用合束器、光纤环形器和波分复用器组成的光路系统、由多波长类型低反射光纤光栅组成的传感器阵列和时分延迟光纤构成的传感系统、由光电探测器、放大器和滤波器、同步采集系统和嵌入式系统组成的电路系统。本发明一方面通过不同波长的光纤f-p激光器构成的光源系统利用边缘滤波技术实现对应波长类型光纤光栅传感器阵列的解调;另一方面,通过对光源系统的脉冲控制根据信号返回时间进行同一波长类型光纤光栅传感阵列的解调。通过边缘滤波和时分复用技术的结合,可以实现在单根光纤上大容量分布的光纤光栅传感阵列的高频解调。

当然,在其他实施例中,f-p激光器驱动器的数量可以更改,只要满足其数量与光纤光栅传感器的数量相对应即可。

本实施例提供的解调系统,光源结构简单、成本低,光源驱动模式不同;且光路只有传感光纤光栅组成,不混杂其他无源光纤滤波器件,系统稳定性好;传感器阵列现有波分复用光栅相邻构成,然后再进行时分复用,相比于现有技术的延迟光纤使用大大降低。

上述系统的构建方法,包括步骤如下:

(1)光源系统的构建:为满足不同波长光纤光栅的解调,设计了由四种不同中心波长的光纤f-p激光器构成的光源系统。四种光纤f-p激光器的中心波长可设定为1510nm,1530nm,1550nm,1570nm,功率2mw,3db带宽2nm,且同时由电路系统进行同步驱动与控制;

(2)光路系统的构建:为满足在单根光纤上的大容量传感系统,光路系统由波分复用合束器、光纤环形器和波分复用分束器构成。其中,波分复用合束器用于将四个不同中心波长的光纤f-p激光器输出的信号光整合到一根光纤,以便可以在单根光纤中实现对应波长传感器的解调;光纤环形器一方面将波分复用合束器整合后的光信号注入到传感系统,另一方面将传感系统的反射信号入射到波分复用分束器;波分复用分束器将于光纤f-p激光器波长对应的光分离出来,以便后续的探测与分析。对应光纤构建系统的设计,波分复用合束器和波分复用分束器可选用对应的(1510nm/1530nm/1550nm/1570nm)cwdm;

(3)传感系统的设计:为满足在单根光纤上实现大容量传感器的布置和解调,在进行传感器布置时,一方面利用波分复用技术,相邻的传感器之间采用不同波长的光纤光栅,且每个光纤光栅的初始中心波长处于对应光纤f-p激光器的斜边上;另一方面,采用时分复用技术,引入时分延迟光纤,每个中心波长相同的光纤光栅之间有一定的距离,满足时分服用时信号采集分辨的需要,同时相同初始波长的光纤光栅为满足大容量的要求采用弱反射光纤光栅;

(4)电路系统的设计:电路系统一方面对四个不同中心波长的光纤f-p激光器进行驱动和同步控制;另一方面对传感系统返回的信号进行光电转换、信号放大、滤波和同步采集以及对采集信号的分析。最终实现各个光纤光栅传感器的波长解析。

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1