测试MOS功率开关的制作方法

文档序号:17044092发布日期:2019-03-05 19:27阅读:193来源:国知局
测试MOS功率开关的制作方法

本申请涉及与包括mos(金属氧化物半导体)开关晶体管的开关器件的测试相关的器件和方法。



背景技术:

在许多应用中,mos晶体管现在用作功率开关,以选择性地将负载耦合到电源,例如在汽车应用中。根据它们的设计,这种mos晶体管能够开关高电压(几百伏或更高)和/或高电流,例如10a或更高。为了控制这样的开关,提供栅极驱动器电路,通常是集成电路(ic)的形式。这种栅极驱动电路控制mos晶体管的栅极端子。此外,这些栅极驱动器电路可以提供如过电流保护的保护功能,例如,如果流过晶体管的电流超过阈值则关断晶体管。

在例如汽车环境的安全关键环境中,必须满足功能安全要求。例如,可能需要可以检测包括mos开关晶体管的开关器件的故障状态。这种故障包括:例如,到mos晶体管的故障连接(有故障的栅极连接、有故障的漏极连接和/或有故障的源极连接),晶体管端子之间的短路,或用于测量通过晶体管的电流的分流晶体管中的故障。在这样的安全关键环境中,可能不仅需要能够检测到存在故障,而且还需要检测故障的类型和位置以便能够相应地作出反应。



技术实现要素:

根据一个实施例,提供了一种方法,包括:

对开关器件执行至少两种测试测量,所述开关器件包括至少一个开关晶体管,其中所述至少两种测试测量选自包括以下项的组中:

确定所述至少一个开关晶体管的栅极电容的度量,

确定所述至少一个开关晶体管的漏极-源极电压的度量,

确定所述至少一个开关晶体管的源极电压的度量,

测试所述开关器件的分流电阻器,和

确定所述分流电阻器两端的电压降的度量,以及

基于所述至少两种测试测量来确定所述晶体管开关器件的故障状态。

根据另一实施例,提供了一种方法,包括:

将测试电流施加到包括至少一个开关晶体管的开关器件,所述测试电流的幅度被选择为基本上不干扰所述开关器件的正常操作,

测量响应于所述测试电流的电压,和

基于测量的所述电压来确定所述开关器件的故障状态。

根据另一实施例,提供了一种方法,包括:

确定至少一个开关晶体管的漏极-源极电压,

确定耦合到所述至少一个开关晶体管的分流电阻器两端的电压,以及

评估所述漏极-源极电压和所述分流电阻器两端的电压之间的比率。

根据另一实施例,提供了一种器件,包括:

测试电流发生器,被配置为将测试电流施加到包括至少一个开关晶体管的开关器件,所述测试电流的幅度被选择为基本上不干扰开关器件的正常操作,

电压测量电路,被配置为测量响应于所述测试电流的电压,和

评估电路,被配置为基于测量的所述电压来确定所述开关器件的故障状态。

根据又一实施例,提供了一种器件,包括:

测量电路,被配置为确定至少一个开关晶体管的漏极-源极电压,并确定耦合到所述至少一个开关晶体管的分流电阻器两端的电压,以及

评估电路,被配置为评估所述漏极-源极电压与所述分流电阻器两端的电压之间的比率。

以上概述仅旨在给出一些实施例的一些特征的简要概述,而不应被解释为进行限制。

附图说明

图1是根据实施例的开关器件的示意图。

图2是示出根据实施例的方法的流程图。

图3是示出根据另一实施例的方法的流程图。

图4是根据实施例的器件的电路图。

图5a和图5b是示出根据一些实施例的测量的示意性信号图。

图6是示出根据实施例的开关器件的电路图。

图7是示出根据实施例的开关器件的电路图。

图8是示出根据实施例的开关器件的电路图。

图9是示出根据实施例的方法的流程图。

图10是示出根据实施例的开关器件的电路图。

具体实施方式

在下文中,将参考附图详细描述各种实施例。应当指出的是,这些实施例只用于说明,并且不被解释为限制性的。例如,虽然实施例可以被描述为包括多个特征或元件,但是在其他实施例中,这些特征或元件中的一些可以被省略和/或可以由备选特征或元件替换。此外,除了明确示出和描述的特征之外,可以提供其他特征或元件,例如在包括诸如mos开关晶体管之类的开关晶体管的传统开关器件中使用的特征或元件。

可以组合来自不同实施例的特征或元件以形成另外的实施例。关于一个实施例描述的变型和修改也适用于其他实施例。

在所示和所描述的实施例中,元件之间的任何直接的电连接或耦合,即,在没有中间元件的如简单金属迹线的连接或耦合,可以通过间接连接或耦合替换,即,包括一个或多个附加中间元件的连接或耦合,反之亦然,只要基本保持连接或耦合的一般目的即可,例如传输某种信号、传输某种信息和/或提供某种控制。换句话说,只要基本上保持连接或耦合的一般目的,就可以修改所示和所描述的连接或耦合。

在附图中,不同附图中的相似或相应的元件具有相同的附图标记,并且将不再重复详细描述。

虽然在下面作为示例使用mos开关晶体管,但是在其他实施例中,可以使用其他种类的场效应晶体管(fet)或者也可以使用绝缘栅双极晶体管(igbt)。这里使用的术语“源极”和“漏极”也包括这种igbt的发射极和集电极。

现在转向附图,图1示意性地示出了根据实施例的开关器件。图1的器件1包括mos开关晶体管10,mos开关晶体管10包括栅极端子13、漏极端子11和源极端子12。虽然图1中示出了单个晶体管10,但是在其他实施例中,可以按顺序提供并联耦合的多个晶体管,即,它们各自的源极端子彼此连接以及它们各自的漏极端子彼此连接,使得当晶体管导通时减小电阻。对这里的开关晶体管的任何提及也旨在涵盖并联耦合的两个或更多个这种晶体管的情况。

当mos晶体管在其源极端子和漏极端子之间提供低欧姆连接时,其处于导通状态或闭合,mos晶体管被称为导通。当晶体管在其源极端子和漏极端子之间基本上电隔离(可能与不希望的漏电流分开)时,其处于截止状态或开路,mos晶体管被称为截止。

取决于实施方式,晶体管10可以是nmos晶体管或pmos晶体管。晶体管10可用于选择性地将负载耦合到电源电压,例如在汽车应用中。

此外,图1的装置包括耦合到源极端子12的分流电阻器15。分流电阻器15是非常低的欧姆电阻器,具有低于1ω的电阻,特别是低于100mω或低于1mω即在微欧(μω)范围内,并且可以测量分流电阻器15两端的电压降以便测量负载电流,即当晶体管10导通时流过漏极端子11和源极端子12之间的晶体管10的电流。

图1的器件还包括测试电路14,以测试图1的器件的功能和连接。例如,如下面将更详细地讨论的,测试电路14可以测试到栅极端子13、漏极端子11、源极端子12和/或分流电阻器15的电连接。而在一些实施例中可以测试图1的器件的所有这些和可能其它特性,在其他实施例中也可以仅测试这些特性中的一种或仅这些特性的子集。在实施例中,由测试电路14执行各种测量以测试特性。下面将使用具体的非限制性实施例进一步讨论细节。测试电路14还可以向晶体管10提供栅极驱动器功能。换句话说,测试电路14可以与栅极驱动器电路集成以驱动并测试晶体管10。

图2示出了根据实施例的方法。图2的方法可以由图1的测试电路14实现,并且为了便于理解将参考图1进行描述,但不限于此。虽然图2的方法被描述为一系列动作或事件,但其中这些动作或事件被描述的顺序不应当被视为进行限制。特别地,动作或事件可以以与所示顺序不同的顺序执行,或者动作或事件中的一些可以并行执行,例如使用测试电路的不同部分来并行执行测量。此外,虽然参考附图标记20-25描述了多个不同测试测量,但是在其他实施例中,可以仅执行这些测量中的一些或仅执行这些测量中的一种。

在20处,图2的方法包括确定mos晶体管的栅极电容的度量,所述mos晶体管如mos晶体管10或并联耦合的多个mos晶体管,如上所述。如本文所使用的,在栅极电容的幅度的情况下,“度量”是指可以给出关于量的大小的信息的任何值或其他信息。在栅极电容的情况下,该度量可以例如是电容的值(例如,给定的法拉),但也可以是指示所述电容的另一个值。例如,如下面更详细解释的,代替直接给出电容的值,也可以给出在给定的充电电流下栅极电容充电到预定电压所需的持续时间,或是在充电/放电电容的预定时间之后达到的电压。在电压的情况下,度量可以是以伏特给出的电压,但也可以是间接量,例如当电压施加到预定电阻器时流动的电流。相反,当电流流过时,可以使用预定电阻器两端的电压降来测量电流。在其他实施例中,如果量超过预定阈值或低于预定阈值,则度量可以是指示符。因此,对于许多量,存在多种直接或间接指示量的方式,并且术语“度量”旨在涵盖这些变化。

如下面将参考附图标记26进一步解释的,栅极电容可以指示到栅极(例如晶体管10的栅极)的连接的故障状态,和/或电流源或用于充电/放电栅极的其他器件中的故障。

在21处,该方法包括确定漏极-源极电压的度量,例如晶体管10两端的电压。在22处,该方法包括确定源极电压的度量,例如,晶体管10的源极端子12处的电压(例如以接地作为参考进行的测量)。漏极-源极电压和/或源极电压可以被用于例如确定漏极和源极之间的短路和/或可被用于确定外部短路。

在24处,该方法包括测试到分流电阻器(例如,分流电阻器15)的连接,以确保分流电阻器被正确连接。在25处,该方法包括确定分流电阻器(例如图1的分流电阻器15)两端的电压降的度量。在21处确定的漏极-源极电压与在分流电阻器两端的电压降的比率可以指示故障和/或老化,也将在下面进一步解释。

在26处,如果存在这样的故障状态,则使用20-25处的测试测量的结果来确定开关器件的故障状态。在下表中给出了在晶体管截止状态下进行20-25处的测试测量时可以标识的各种故障状态的概述,这里也称为第一表:

在上面的第一表中,vds是在21处确定的漏极-源极电压,vshunt是在25处确定的分流电阻器两端的电压降,vsource是在22处确定的源极电压。上表的列反映了图2中20-25处的测试测量,表中的行与各种故障状态有关。可以通过与相应的预定阈值进行比较来评估“过高”和“过低”,其中不同或相同的阈值可以被用于不同的故障状态。mos端子开路可以指断开的栅极端子、漏极端子或源极端子。栅极短路涉及短路的栅极。分流开路基本上与分流电阻器15“缺失”有关,并且分流端子开路涉及到分流电阻器的连接断开。

上述第一表中的“x”表示当应用列的相应条件时,指示相应的故障状态。例如,如果栅极阻抗过高(高于预定值),则晶体管10可以被断开,或者在多个并联晶体管的情况下,晶体管中的至少一个晶体管可以被断开。括号中的“x”表示次要指示。例如,低栅极阻抗可以指示栅极充电器件中的故障和栅极短路二者。然而,在栅极短路的情况中,附加地,源极电压可以高于相应的预定值。

以这种方式,通过组合不同的确定或测试可以看出,可以清楚地区分不同的故障状态。

下表(也称为第二表)给出了如果在晶体管导通时进行20-25处的测试测量确定故障状态的概述。

在上表中,vbat是电源电压,晶体管选择性地将负载耦合到该电源电压。在这种情况下,当在25处确定的电压vshunt对应于该电池电压时,可以指示分流开路。同样在这里,可以组合多种测量以区分不同的故障。例如,如上表所示,分流短路由比率vds/vshunt高于预定(预期)值表示。然而,也可以通过晶体管的开路漏极端子来引起确定这种错误的比率。然而,如果栅极阻抗正确(既不过高也不过低),则可以排除开路漏极端子。另外,针对第一表给出的解释也适用于第二表。

当根据上表检测到故障时,可以通过结合mos开关晶体管的系统采取适当的措施。例如,如果在并联耦合的多个晶体管的情况下只有一个晶体管有缺陷,则其他晶体管可用于至少使系统进入安全状态,例如在自动驾驶应用中使汽车进入受控制的停止状态。要采取的措施可取决于系统和故障类型。

在对所执行的各种测量的上述概述及其评估之后,以下将更详细地讨论用于这种确定和测试的示例。

图3是根据实施例的方法的流程图,其可以用于例如在图2中的20处确定栅极电容的度量或者在图2的24处测试分流电阻器的示例,但是也可以独立于它们而使用。在图3中的30处,该方法包括将小测试电流施加到开关器件。这里使用的小测试电流是测试电流,其基本上不影响开关器件的正常操作,使得测试可以在器件的正常操作期间执行。例如,如果测试电流是用于如像晶体管10的开关器件的mos晶体管的栅极充电或放电的测试电流,则测试电流的幅度和/或持续时间使得晶体管的开关状态(导通或截止)不改变,或者换句话说,响应于测试电流,晶体管的阈值电压不会被跨越。如果测试电流例如施加到如分流电阻器15的分流电阻器,则测试电流的幅度小于流过晶体管的负载电流的10%,例如小于1%或更小,使得负载电流不会显著地被测试电流更改。

在31处,响应于电流测量开关器件处的电压,例如在栅极电容测试的情况下的栅极-源极电压,或在测试分流电阻器的情况下分流电阻器两端的电压。以这种方式,在一些实施例中,可以在开关器件的正常操作期间执行栅极电容的测量和/或分流电阻器的测试。

为了进一步说明图3的方法,接下来参考图4至图7,将讨论图3的方法的应用以例如在图2中的20处确定栅极电容的度量。

图4是根据实施例的开关器件的电路图。图4的开关器件包括并联耦合的两个晶体管42a、42b。操作中的晶体管42a、42b用于选择性地将提供电压vbat1的电压源40耦合到由图4中的电阻器表示的负载412。

两个晶体管42a、42b的数量仅用作示例,并且在其他实施例中,可以仅提供单个晶体管或并联耦合的多于两个的晶体管。

图4的实施例包括控制电路41,其可以以集成电路的形式提供,并且用于控制晶体管42a、42b的栅极并且用于执行测试,如下面将更详细地讨论的那样。

提供电荷泵43以产生基于电压vbat1的电压,用于驱动晶体管42a、42b的栅极端子。为了控制晶体管42a和42b的栅极(下面统称为晶体管42),提供第一开关46和第二开关47。当第一开关46闭合时,如电流源45所示,充电电流i1流动使晶体管42的栅极端子充电,从而使晶体管42导通。当开关46开路并且第二开关47闭合时,如电流源48所示,放电电流i2流动使晶体管42的栅极端子放电,从而使晶体管42截止。开关46、47由逻辑电路44根据信号on1来控制。通过信号on1,结合图4的开关器件的系统可以发信号通知晶体管42将被导通或截止。

此外,图4的器件包括耦合在晶体管42和负载412之间的分流电阻器411。如参考图1对分流电阻器15所解释的,分流电阻器411可以具有低电阻值,例如低于1ω,特别是低于1mω。分流电阻器411的第一端子和第二端子分别耦合到差分放大器410的正输入和负输入,差分放大器410输出对应于分流电阻器411两端的电压降的值isense1。该电压降是从电压源40经由晶体管42流动到负载412的负载电流的度量。

为了在晶体管42截止的状态下确定栅极电容的度量,逻辑44暂时闭合开关46以用电流i1对晶体管42的栅极稍微充电。晶体管46闭合的时间太短,以至于晶体管42没有导通,即晶体管42的栅极-源极电压不超过晶体管42的阈值电压。

相反,在晶体管42导通的状态下,为了确定栅极电容的度量,开关47被暂时闭合以稍微放电晶体管42的栅极端子。选择开关47闭合的时间,使得晶体管42不被截止,或者换句话说,栅极-源极电压不低于阈值电压。

在该测量期间,晶体管42的栅极-源极电压由窗口比较器49测量。晶体管42的栅极端子耦合到窗口比较器49的正输入,并且晶体管42的源极端子耦合到窗口比较器49的负输入。电压vwin1、vwin2确定用于窗口比较器49的“窗口”。因此,窗口比较器49确定其正输入和负输入之间的电压差,在对应于晶体管42的栅极-源极电压的这种情况下,是否在vwin1和vwin2之间。基于该确定,可以得到栅极电容的度量,如现在将参照图5a和图5b所示的那样。

图5a示出了在晶体管42截止的状态下利用图4的器件执行的示例测量。在图5a的示例中,开关46闭合时间δt,使得栅极电压如曲线50所示上升。电压差δu=δt·i1/cg,其中i1是充电电流,cg是栅极电容,在图4的示例中为晶体管42的组合栅极电容。

在一些实施例中,可以选择持续时间δt,使得开关46保持闭合直到栅极源极电压在vwin1和vwin2之间,如窗口比较器49所检测到的。如果两个晶体管40a、40b正确连接,则根据上面的等式产生对应于栅极电容的某个预期δt。在例如两个晶体管42a、42b中的一个使其栅极断开的情况下,有效栅极电容cg仅为两个晶体管的栅极电容的一半,其近似对应于约为预期值一半的δt。在两个晶体管42被断开的情况下,有效栅极电容非常小(因为没有栅极电容被连接),这使得电压非常快的上升和非常小的δt。另一方面,如果例如电荷泵43发生故障使得i1低于它应该是的值或甚至为零,则δt长于预期值,或者在i1等于零(电荷泵或开关46的完全故障)的情况下,永远不会达到vwin1和vwin2之间的电压。因此,通过评估栅极-源极电压达到vwin1和vwin2之间的电平所需的时间,可以检测并彼此区分各种故障状态,特别是断开的栅极端子和栅极电流供应的故障。除了断开的栅极之外的其他故障也可能是有缺陷的栅极氧化物,其也改变栅极电容。

测量时间δt可以使用振荡器在电路41内部完成。或者,测量可以由微控制器执行,并且逻辑44可以通过总线或其他连接将窗口比较器49的输出转发到这样的微控制器。

应当注意,代替评估直到电压达到vwin1和vwin2之间的值的时间δt,在其他实施例中,可以施加i1固定时间δt,并且可以评估在此时间之后得到的电压δu。在其他实施例中,可以评估曲线50的斜率(例如,δu/δt)。所有这些度量都给出了与栅极电容cg和可能的故障状态有关的相同信息。

从图5a可以看出,vwin1和vwin2低于晶体管42的阈值电压vth,使得晶体管在测试期间保持截止,并且测试不影响图4所示的器件的操作。

图5b示出在晶体管42导通的情况下的测量。在这种情况下,放电电流i2轻微地使栅极放电,如图5b中的曲线51所示。选择放电使得栅极-源极电压保持高于阈值电压vth,从而晶体管42保持导通。在时间δt期间用于栅极放电的电压差δu是δu=δt·i2/cg。

类似于参考图5a所讨论的,可以测量栅极-源极电压达到vwin1和vwin2之间的值(在这种情况下高于阈值电压vth)所需的时间δt,或者在可以测量预定放电时间δt之后达到的栅极-源极电压,或者可以测量曲线51的斜率,这些都给出关于晶体管42是否连接以及栅极放电是否正常工作的信息(例如开关47正常工作),对于晶体管截止的情况,可以获得类似于已经针对图5a所解释的内容。

图6示出了根据实施例的开关器件,该开关器件是图4的开关器件的变型。

在图6中,与图4相比,代替窗口比较器49,提供了数模转换器(dac)60。如图所示,数模转换器60的输入耦合到晶体管42的栅极端子和晶体管42的源极端子,使得数模转换器60输出晶体管42的栅极-源极电压的数字表示。如参考图4和图5解释的那样执行测量,即在晶体管42的截止状态下,开关46可以暂时闭合,并且在导通状态下,开关47可以如图所示暂时闭合。然后可以在逻辑电路44中评估栅极-源极电压,例如与对应于图5a和图5b的电压vwin1和vwin2的阈值进行比较。因此,与图4相比,不使用窗口比较器49执行与阈值电压的比较,而是对栅极-源极电压的数字表示执行与阈值电压的比较。在其他实施例中,测量值可以例如经由总线输出并且在外部评估,例如在微控制器中。而且,关于图4和图5的说明也适用于图6的实施例。

在其他实施例中,代替用恒定电流对栅极充电或放电,可以通过向栅极端子施加交流(ac)信号来测量与栅极电容相关的阻抗。在

图7示出相应的实施例。同样,已经参考先前实施例讨论的组件具有相同的附图标记,并且将不再被详细讨论。

在图7的实施例中,提供由电荷泵43提供的ac电流源70。当开关71闭合时,相应的ac电流i4被施加到晶体管42a、42b的栅极端子。该ac电流i4在上述意义上同样是小电流,即,幅度使得由该ac电流引起的晶体管42的栅极端子的充电和放电不会改变晶体管42的开关状态(导通或截止)。

幅度检测器72响应于该ac电流测量晶体管42a、42b的栅极-源极电压的幅度。

幅度检测器72包括用于整流的二极管73和用作平滑滤波器的电阻器74和电容器75的并联电路。如此整流和滤波的栅极电压被提供给窗口比较器76,窗口比较器76评估幅度是否在第一电压vwin1和第二电压vwin2之间的预期范围内。如果幅度在该预期范围之外,则这可以指示如上所述的故障。

换句话说,当幅度在预期范围内时,这表明栅极电容处于预期范围内,因为电流源70产生并施加到栅极端子的电流与测量的幅度之间的比率取决于栅极阻抗并因此取决于栅极电容。如果幅度在由vwin1和vwin2定义的预期范围内,则这表明晶体管42的栅极、漏极和源极端子连接,并且晶体管42的栅极氧化物没有缺陷(因为这会改变电容并因此改变阻抗)。

接下来,参考图8,将讨论图3的方法应用于测试分流电阻器的的示例。图8的实施例基于前面讨论的实施例,并且相同的元件同样具有相同的附图标记,并且将不再描述。

在图8中,省略了用于控制晶体管42的栅极(例如图4、图6和图7的组件45-48)的开关和电流,以提供更清晰的表示,并且仅通过晶体管42的栅极端子到控制电路41的连接来表示。换句话说,虽然在图8的表示中省略了这些组件,但是仍然可以提供它们。

在图8的实施例中,通过闭合开关82,可以将由电流源80象征的电流i4提供给也耦合到放大器410负输入的分流电阻器411的第一端子,并且通过闭合开关83,可以将由电流源81象征的测试电流i5提供耦合到放大器410正输入的分流电阻器411的第二端子。电流i4、i5可以彼此相同或不同。电流i4、i5同样是图3的小的测试电流的示例,并且被选择为显著小于经由晶体管42流到供电负载412的电流,例如是到供电负载412的负载电流的10%或更小,或1%。例如,电流i4、i5可以在毫安范围内,而负载电流可以是几安培或几十安培。电阻器411的第一端子和第二端子耦合到多路复用器84的输入。多路复用器84的输出被耦合到数模转换器85。以这种方式,可以将分流电阻器411两端的电压的数字表示提供给逻辑44以进行评估。在其它实施例中,由放大器410输出的电压isense可在下面描述的测试中来评估。

如上所述在图8中使用该分流电阻器411执行的测试具有非常低的电阻值,例如在μω范围内,因此几乎对应于分流电阻器的第一端子和第二端子之间的短路。为了测试,第一开关82闭合,并且监测分流电阻器411两端的电压。如果正确连接分流电阻器,则开关82的这种闭合以基本相同的方式改变分流电阻器411的两个端子处的电压(因为它几乎是短路),因此,分流电阻器411两端的电压的至少微小变化被逻辑44检测到。相比之下,如果与分流电阻器的一个端子的连接有缺陷,则仅通过电流i4对第一端子充电,因此通过逻辑44看到的分流电阻器411两端的电压降改变。然后通过闭合开关83执行类似的测试。此外,在分流电阻器正确连接的情况下,基本上没有检测到分流电阻器411两端的电压的变化。否则,可以检测到电压的变化。例如,可以将电压的变化与阈值进行比较,并且如果变化超过了阈值,则这可以指示分流电阻器411的故障连接。

通过使用两个开关82、83,可以定位与分流电阻器411的连接中的故障:如果与耦合到晶体管42的分流电阻器411的端子(图8的“上”端子)的连接中存在故障,则闭合开关83导致分流电阻器411两端的电压的变化,而开关82的闭合将基本上不会改变分流电阻器411两端的电压。相反,如果在与耦合到负载412的分流电阻器411的端子(图8的“下”端子)的连接中有故障,则闭合开关82将改变分流电阻器411两端的电压,而闭合开关83将使电压基本不变。

以这种方式,使用小的测试电流并测量分流电阻器411两端的电压,可以检测分流器的连接中的故障。

可以用图8的器件进行的进一步测量是晶体管42的源极电压的测量,这是用于在图2中的22处确定源极电压的度量的实现示例。对于该测量,多路复用器84向数模转换器85输出相对于如接地vbat1的参考电压而测量的源极电压(两者都连接到图8中的多路复用器84)。然后,逻辑44可以评估源极电压或者可以经由总线将源极电压传递到外部评估电路。源极电压给出晶体管42是否导通的信息。例如,当图8的晶体管42导通时,源极电压应基本上等于电压vbat1。相反,如果晶体管42截止,则根据负载412的实现,源极电压应该处于或接近接地。因此,如果晶体管截止而源极电压处于或接近vbat1,则这可以指示晶体管42中的一个或两个的短路。相反,如果晶体管根据施加到其栅极的信号接通且源极电压接近接地,则这可以指示晶体管的故障,因为晶体管没有切换到导通状态,正如以上参考图2在表中部分讨论的那样。

接下来,将参考图8和图9解释漏极-源极电压的度量和分流电阻器电压降的度量的确定(图2中的21和25)。图9示出了根据实施例的对应方法。在图9中的90处,该方法包括确定漏极-源极电压。这可以通过多路复用器84在图8中执行,通过使用分别耦合到晶体管42的漏极和源极的多路复用器输入向数模转换器85提供漏极-源极电压。

在91处,该方法包括确定如图8的分流电阻器411的分流电阻器两端的电压。在图8中,如果连接分流电阻器,则可以以与先前讨论的测试相同的方式进行分流器两端的电压的这种测量,即通过提供分流电阻器411的第一端子和第二端子之间的电压差至数模转换器85以在逻辑44中作为数字值进行评估或经由总线提供到外部评估。

在92处,图9中的方法确定评估漏极-源极电压与分流电阻器两端的电压之间的比率。在晶体管42的导通状态中,漏极-源极电压vds与分流电阻器411两端的电压vshunt根据下式成比例:

vds=vshunt·ron/rshunt,

其中ron是晶体管42的导通电阻,rshunt是分流电阻器411的电阻。

因此,比率vds/vshunt对应于比率ron/rshunt。为了测试,在实施例中,评估漏极-源极电压和分流电压之间的比率是否在预定(例如可编程)范围内,例如对应于预定值。如果比率vds/vshunt在预定范围之外,则这可以指示例如漏极和源极之间的短路或晶体管42的一个或多个断开的端子。

附加地或备选地,在一些实施例中,可以随时间监测源极-漏极电压与分流电阻器两端的电压之间的比率。当在老化期间导通电阻ron改变、特别是增加时,该比率的变化(例如漂移)可以指示晶体管42的老化。ron这种增加可以例如由晶体管42中的一个或两个的源极金属化的劣化引起。当比率超过预定值时,这可能表明应该更换晶体管。以这种方式,在一些实施例中,可以实现早期警告,使得在一些实施例中在实际故障发生之前可以更换晶体管42。

如上表中已经指出的,在一些实施例中,也可以检测外部短路。这在图10中示出。

在图10的实施例中,电路41、分流电阻器411和晶体管42布置在模块100上。负载412和电压源40在模块100外部。在图10中,箭头101表示从电压源40到负载412的外部短路,即模块100外部的短路。在这种外部短路的情况下,基本上没有电流流过分流电阻器411和晶体管42,并且分流电阻器411两端的电压和漏极-源极电压处于或接近零。另一方面,如果板上发生短路(例如分流器411上的短路或晶体管42上的短路),则至少在分流电阻器411上的短路情况下的漏极-源极电压或在晶体管42上的短路情况下的分流电阻器411两端的电压不同于零。因此,以这种方式,可以将板100外部的外部短路与模块100上的短路区分开。

因此,利用这里讨论的实施例,可以执行测试测量以确定和区分mos晶体管开关器件中的各种故障状态。如已经提到的,虽然已经讨论了多个不同的测试测量,但是其他实施例可以仅实施这些测量中的一些或一个。因此,显然上述实施例不应被解释为进行限制。

至少一些实施例由以下给出的示例限定:

示例1.一种方法,包括:

对开关器件执行至少两种测试测量,所述开关器件包括至少一个开关晶体管,其中所述至少两种测试测量选自包括以下项的组中:

确定所述至少一个开关晶体管的栅极电容的度量,

确定所述至少一个开关晶体管的漏极-源极电压的度量,

确定所述至少一个开关晶体管的源极电压的度量,

测试所述开关器件的分流电阻器,和

确定所述分流电阻器两端的电压降的度量,以及

基于所述至少两种测试测量来确定所述晶体管开关器件的故障状态

示例2.如示例1的方法,其中,所述方法包括:在所述开关器件的正常操作期间执行所述至少两种测试测量。

示例3.如示例1或2的方法,其中,确定故障状态包括:当栅极阻抗的度量指示所述栅极阻抗高于第一预定值时,确定所述至少一个开关晶体管的端子断开。

示例4.如示例3的方法,其中,确定端子断开包括:如果在所述至少一个开关晶体管的导通状态中,所述漏极-源极电压的度量和所述分流晶体管两端的电压的度量指示所述漏极-源极电压与所述分流电阻器两端的源极电压的比率高于第二预定值,则检测到所述端子断开。

示例5.如示例1-4中任一个的方法,其中,确定故障状态包括:如果所述栅极阻抗的度量指示所述栅极阻抗低于第三预定值,则确定存在栅极短路。

示例6.如示例5的方法,其中,如果所述源极电压的度量指示所述源极电压高于第四预定值,则确定存在所述栅极短路。

示例7.如示例1-6中任一个的方法,其中,确定所述故障状态包括:如果所述漏极-源极电压的度量和所述分流电压的度量指示所述漏极-源极极电压与所述分流电阻器两端的电压的比率低于第五预定值,则确定存在漏极-源极短路。

示例8.如示例7的方法,其中,如果在所述至少一个开关晶体管的截止状态中,所述源极电压的度量指示所述源极电压高于第六预定值,则确定存在所述漏极-源极短路。

示例9.如示例1-8中任一个的方法,其中,确定故障状态包括:基于所述分流电阻器的测试来确定开路的分流端子和断开的分流端子中的一项。

示例10.如示例1-9中任一个的方法,其中,确定故障状态包括:如果所述漏极-源极电压的度量和所述分流电阻器两端的电压的度量指示所述漏极-源极电压与所述分流电阻器两端的电压的比率高于第七预定值,并且所述栅极阻抗的度量指示所述栅极阻抗基本上在预期范围内,则确定存在所述分流电阻器的短路。

示例11.如示例1-10中任一个的方法,其中,确定故障状态包括:如果在所述至少一个开关晶体管的导通状态中,所述分流电阻器两端的电压的度量指示所述分流电阻器两端的电压是基本上等于提供给所述开关晶体管器件的电源电压,则确定所述分流电阻器开路。

示例12.如示例1-11中任一个的方法,其中,确定故障状态包括:如果在所述至少一个开关晶体管的截止状态中,所述栅极阻抗的度量指示所述栅极阻抗低于第八预定值,并且所述源极电压的度量指示所述源极电压基本上处于预期值,则确定栅极充电电路是有缺陷的。

示例13.如示例1-12中任一个的方法,其中,确定故障状态包括:基于所述源极电压的度量指示所述源极电压高于第九预定值,并且基于所述分流电阻器两端的电压的度量和所述漏极-源极电压的度量中的至少一个度量,确定模块外部的短路,所述模块包括用于执行所述至少两种测试测量的电路、所述至少一个开关晶体管和所述分流电阻器。

示例14.如示例1-13中任一个的方法,其中,所述至少一个开关晶体管包括并联耦合的至少两个开关晶体管,并且其中确定故障状态包括:基于所述栅极电容的度量来在断开的所述至少两个开关晶体管的一个或多个栅极端子之间进行区分。

示例15.一种方法,包括:

将测试电流施加到包括至少一个开关晶体管的开关器件,所述测试电流的幅度被选择为基本上不干扰所述开关器件的正常操作,

测量响应于所述测试电流的电压,和

基于测量的所述电压来确定所述开关器件的故障状态。

示例16.如示例15的方法,其中,施加所述测试电流包括:施加所述测试电流包括:将所述测试电流施加到所述至少一个开关晶体管的栅极端子,其中选择所述测试电流的幅度使得所述开关晶体管的开关状态不响应于所述测试电流而改变,并且其中测量所述电压包括:测量所述至少一个开关晶体管的栅极-源极电压。

示例17.如示例16的方法,其中,施加所述测试电流包括:施加恒定的测试电流以对所述至少一个开关晶体管的栅极端子进行充电或放电中的至少一项,其中确定所述故障状态基于以下项中的至少一项:

-所述测试电流流动直到所述栅极-源极电压达到预定电压范围的时间,

-施加所述测试电流时所述栅极-源极电压的斜率,和

-当施加所述测试电流预定时间时达到的栅极-源极电压。

示例18.如示例17的方法,其中,确定所述故障状态包括:确定所述至少一个开关晶体管的一个或多个栅极端子中的至少一个被断开,或者产生所述测试电流的电路是有缺陷的。

示例19.如示例16的方法,其中,所述测试电流是交流电,并且其中,检测所述故障状态是基于响应于所述测试电流的所述栅极-源极电压的幅度。

示例20.如示例15-19中任一个的方法,其中,施加所述测试电流包括:选择性地将所述测试电流施加到分流电阻器的第一端子或第二端子,所述分流电阻器被耦合到所述至少一个开关晶体管,其中测量所述电压包括测量所述分流电阻器两端的电压。

示例21.如示例20的方法,其中,所述测试电流小于当所述至少一个开关晶体管导通时的负载电流的10%。

示例22.如示例20或21的方法,其中,检测所述故障状态包括基于所述分流电阻器两端的电压来检测与所述分流电阻器相关联的故障状态。

示例23.一种方法,包括:

确定至少一个开关晶体管的漏极-源极电压,

确定耦合到所述至少一个开关晶体管的分流电阻器两端的电压,以及

评估所述漏极-源极电压和所述分流电阻两端的电压之间的比率。

示例24.如示例23的方法,其中,评估所述比率包括:如果所述比率偏离预期范围,则确定与所述开关晶体管相关联的故障状态。

示例25.如示例23的方法,其中,评估所述比率包括:监测所述比率随时间的变化以检测所述至少一个开关晶体管的老化。

示例26.一种器件,包括:

测试电流发生器,被配置为将测试电流施加到包括至少一个开关晶体管的开关器件,所述测试电流的幅度被选择为基本上不干扰开关器件的正常操作,

电压测量电路,被配置为测量响应于所述测试电流的电压,和

评估电路,被配置为基于测量的所述电压来确定所述开关器件的故障状态。

示例27.如示例26的器件,其中所述测试电流发生器包括栅极充电/放电电路,所述栅极充电/放电电路被配置为对所述至少一个开关晶体管的栅极端子充电/放电,其中选择所述测试电流的幅度使得所述开关晶体管的开关状态不响应于所述测试电流而改变,并且其中所述电压测量电路被配置为测量所述至少一个开关晶体管的栅极-源极电压。

示例28.如示例27的器件,其中所述栅极充电/放电电路被配置为施加恒定的测试电流以对所述至少一个开关晶体管的栅极端子进行充电或放电中的至少一项,其中所述评估电路被配置为基于以下项中的至少一项来确定所述故障状态:

-所述测试电流流动直到所述栅极-源极电压达到预定电压范围的时间,

-施加所述测试电流时所述栅极-源极电压的斜率,和

-当施加所述测试电流预定时间时达到的栅极-源极电压。

示例29.如示例27或28的器件,其中所述电压测量电路包括窗口比较器或模数转换器中的至少一项。

示例30.如示例27-29中任一个的器件,其中所述栅极充电/放电电路被配置为产生作为交流电的所述测试电流,且其中所述电压测量电路被配置为测量响应于所述测试电流的所述栅极-源极电压的幅度。

示例31.如示例26-30中任一个的器件,其中所述测试电流发生器被配置为选择性地将所述测试电流施加到分流电阻器的第一端子或第二端子,所述分流电阻器被耦合到所述至少一个开关晶体管,其中所述电压测量电路被配置为测量所述分流电阻器两端的电压。

示例32.如示例31的器件,其中所述测试电流小于当所述至少一个开关晶体管导通时的负载电流的10%。

示例33.一种器件,包括:

测量电路,被配置为确定至少一个开关晶体管的漏极-源极电压,并确定耦合到所述至少一个开关晶体管的分流电阻器两端的电压,以及

评估电路,被配置为评估所述漏极-源极电压与所述分流电阻器两端的电压之间的比率。

示例34.如示例33的器件,其中所述评估电路被配置为:如果所述比率偏离预期范围,则确定与所述开关晶体管相关联的故障状态。

示例35.如示例33或34的器件,其中所述评估电路被配置为:监测所述比率随时间的变化,以检测所述至少一个开关晶体管的老化。

示例36.如示例33-35中任一个的器件,

其中所述测量电路包括多路复用器和数模转换器,其中所述多路复用器被配置为选择性地将所述漏极-源极电压或所述分流电阻器两端的电压提供给所述数模转换器。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1