基于核磁共振的致密储层岩电测量装置的制作方法

文档序号:16083965发布日期:2018-11-27 22:11阅读:160来源:国知局

本实用新型涉及致密储层性能研究领域,具体涉及一种基于核磁共振的致密储层岩电测量装置。



背景技术:

目前,致密储层孔隙结构和岩石成分复杂、储集空间多样、非均质性强,故对其复杂孔喉系统的测井响应一直缺乏系统的研究,使得致密储层评价效果不好,复杂储层测井解释符合率低,难以准确获取含油气饱和度,使用传统的阿尔奇公式也显示出现了非阿尔奇特性。

常用的储层孔喉结构表征技术手段主要有铸体薄片、扫描电镜、毛管压力曲线法(压汞技术)、核磁共振及微纳米-CT扫描技术等。其中铸体薄片与扫描电镜都只能针对某个二维断面进行观察,经过后续图像处理提取有限的二维孔喉结构信息。

毛管压力曲线法最常用的是压汞技术,常规压汞技术不能直接测量吼道数量,只能给出不同吼道半径及对应吼道所控制的体积分布。恒速压汞技术受进汞压力限制,无法识别半径小于0.119μm的孔隙和喉道,且还涉及有毒物质的使用。微纳米-CT扫描法,扫描速度快,扫描覆盖范围大,提供孔喉结构定量参数,但测量方法复杂,且费用较高。



技术实现要素:

针对现有技术中的上述不足,本实用新型提供的基于核磁共振的致密储层岩电测量装置通过测量的参数能够计算致密储层的多个岩石电性参数。

为了达到上述发明目的,本实用新型采用的技术方案为:

提供一种基于核磁共振的致密储层岩电测量装置,其包括毛管压力电性联测仪、核磁共振仪和数据采集控制台;毛管压力电性联测仪包括高压氮气储罐、围压泵和用于装夹岩样的岩心夹持器,高压氮气储罐和围压泵均通过管道与岩心夹持器一端连接,岩心夹持器的另一端上连接的管道延伸至放置在称重装置上的测量瓶内;

岩心夹持器放置于核磁共振仪的测量腔内,高压氮气储罐与岩心夹持器之间的管道上设置有第一阀门和第一压力控制器,围压泵与岩心夹持器之间的管道上设置有第二阀门和第二压力控制器;岩心夹持器与测量瓶之间的管道上设置有第三阀门;

岩心夹持器的两端分别通过一个电极与用于测量岩样电阻的LCR数字电桥连接,第一压力控制器、第二压力控制器、LCR数字电桥、核磁共振仪和称重装置均与数据采集控制台连接。

本实用新型的有益效果为:本方案将饱和的岩样放置在岩心夹持器中,采用半渗隔板法和核磁共振仪相结合,通过高压氮气瓶和围压泵对饱和岩样施加一定围压和驱替压力,在无水流出时,通过LCR数字电桥和核磁共振仪可以测得驱替过程中不同含水饱和度下的岩心电阻和T2谱及毛管压力;

数据采集控制台通过岩心电阻和T2谱及毛管压力可以对整个测量装置进行监测,实时测量不同含水饱和度下岩样的电阻率、毛管压力和孔隙半径,从而对岩样的孔喉分布及含油气饱和度进行有效的评价及分析。

附图说明

图1为基于核磁共振的致密储层岩电测量装置的示意图。

其中,1、第一阀门;2、第二阀门;3、第三阀门;4、高压氮气储罐;5、第一压力控制器;6、岩心夹持器;7、核磁共振仪;8、LCR数字电桥;9、电极;11、温度采集模块;12、时间控制器;13、围压泵;14、第二压力控制器;15、测量瓶;16、称重装置;17、压力采集器;18、数据采集控制台;19、亲水隔板。

具体实施方式

下面对本实用新型的具体实施方式进行描述,以便于本技术领域的技术人员理解本实用新型,但应该清楚,本实用新型不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本实用新型的精神和范围内,这些变化是显而易见的,一切利用本实用新型构思的实用新型创造均在保护之列。

如图1所示,该基于核磁共振的致密储层岩电测量装置包括毛管压力电性联测仪、核磁共振仪7和数据采集控制台18;毛管压力电性联测仪包括高压氮气储罐4、围压泵13和用于装夹岩样的岩心夹持器6,高压氮气储罐4和围压泵13均通过管道与岩心夹持器6一端连接,岩心夹持器6的另一端上连接的管道延伸至放置在称重装置16上的测量瓶15内。

岩心夹持器6放置于核磁共振仪7的测量腔内,高压氮气储罐4与岩心夹持器6之间的管道上设置有第一阀门1和第一压力控制器5,围压泵13与岩心夹持器6之间的管道上设置有第二阀门2和第二压力控制器14;岩心夹持器6与测量瓶15之间的管道上设置有第三阀门3。

其中的称重装置16为电子天平,通过岩样相邻饱和水状态时测得的重量差值可以得到岩样排出的水,通过排出水的质量可以快速计算出岩样此时的含水饱和度。

其中,第一压力控制器5和第二压力控制器14实则为一压力传感器,其可以选用型号为PT124G-128的压力传感器,数据采集控制台18可以为一台电脑,也可以选用控制芯片,其型号为TMS320DSC2X。

如图1所示,岩心夹持器6上设置有与数据采集控制台18连接的温度采集模块11,温度采集模块11可以选用温度计或温度传感器,当为温度传感器时,其可以选用型号为DS18B20数字温度传感器。

岩心夹持器6的两端分别通过一个电极9与用于测量岩样电阻的LCR数字电桥8连接,第一压力控制器5、第二压力控制器14、LCR数字电桥8、核磁共振仪7和称重装置16均与数据采集控制台18连接。

本方案提到的第一阀门1、第二阀门2和第三阀门3可以为普通的手动开启关闭的阀门,不过为了方便实现自动化控制,也可以选用可以自动调节的电磁阀,不过此时第一阀门1、第二阀门2和第三阀门3均需要与数据采集控制台18连接。

本测量装置在使用时,高压氮气储罐4和第一阀门1相配合用于给岩心夹持器6提供驱替压力,第一压力控制器5用于采集相应管道上的压力,数据采集控制台18通过其采集的压力数据判断给岩心夹持器6提供的驱替压力是否达到设定值。

围压泵13与第二阀门2相配合用户给岩心夹持器6提供围压,第二压力控制用于采集相应管道上的压力,数据采集控制台18通过其采集的压力数据判断给岩心夹持器6提供的围压是否达到设定值。

当与测量瓶15连接的管道无水流出时,表明岩样处于饱和水状态,此时第一压力控制器5采集的压力为毛管压力,LCR数字电桥8和核磁共振仪7可以随时将其采集的数据上传至数据采集控制台18,在岩样未处于饱和水状态时,数据采集控制台18可以每隔设定时间记录一次,当岩样处于饱和水状态时,数据采集控制台18需要记录该时刻的毛管压力、LCR数字电桥8采集的电阻、核磁共振仪7的T2谱及岩样的温度。

实施时,本方案优选岩心夹持器6内部放置岩心的密封腔的两端放置有与岩样两端接触的亲水隔板19,设置亲水隔板19后可以在突破一定喉道的毛管压力前,避免气体进入岩样中,以保证试验过程中测量的各个数据的准确性。

其中,隔板法的原理是在不超过某一压力的情况下亲水隔板只允许水通过,而不允许气通过。在驱替过程中,只有当外加的驱替压力等于或大于一定喉道的毛管压力时,非润湿相(气)才能通过喉道,进入孔隙中把湿相流体(水)排出。通过测量的出水量可以计算出岩芯含水饱和度,同时LCR数字电桥8可以测量出该饱和度下的岩样电阻,外加压力就相当于一定喉道的毛管压力)。

实施时,在测量瓶15与第三阀门3之间设置有与数据采集控制台18连接的压力采集器17,其可以选用型号为PT124G-128的压力传感器,该压力采集器17的设置,可以通过其采集的压力信号判断岩样中是否有水流出,避免人工观察出现误差引起后续岩石电性参数的计算不准确性。

再次参考图1,实施时,本方案优选基于核磁共振的致密储层岩电测量装置还包括分别与核磁共振仪7、LCR数字电桥8和数据采集控制台18连接的时间控制器12;设置时间控制器12后,可以通过时间控制器12控制核磁共振仪7和LCR数字电桥8每隔设定时间上传一次采集的数据。

本方案提供的测量装置采用半渗隔板法和核磁共振技术设备实时测量不同含水饱和度下岩样的电阻率、毛管压力和孔喉分布,其测量原理如下:

用半渗隔板法测定岩样的电阻率,首先配置地层水对岩样进行饱和,再通过高压氮气瓶和围压泵13对岩样施加一定围压和驱替压力,通过LCR数字电桥8和核磁共振仪7,记录驱替前100%饱和条件和驱替过程中不同含水饱和度下的岩心电阻和T2谱及毛管压力,通过换算公式(1)、(2)(5)和(6)得到不同含水饱和度下的孔隙半径和电阻率,过程中通过时间控制器12设定一定时间(半小时)实行实时监测,并通过数据采集装置进行整个实验装置进行监测,从而对岩样的孔喉分布及含油气饱和度进行有效的评价及分析。

至此已完成基于核磁共振的致密储层岩电测量装置的详细描述,下面接着采用测量装置测量岩石电性参数的方法进行详细说明。

该基于核磁共振的致密储层岩电测量装置测量岩石电性参数的方法包括步骤S1至步骤S10。

在步骤S1中,获取致密储层处的烘干岩样,并记录岩样的孔隙度、渗透率、长度、干重和直径,之后配置地层水,并在设定压力下对岩样进行饱和,并测量岩样的饱和重;

在步骤S2中,当排空测量装置内的气体和水分后,关闭第一阀门1、第二阀门2和第三阀门3,将饱和的岩样放置于岩心夹持器6的密封腔内,开启核磁共振仪7和LCR数字电桥8,并记录岩样完全饱和水时的岩样温度、毛管压力P0、电阻和T2谱。

在对测量装置内的气体和水分是否排空进行判断时,主要是通过第一压力控制器5、第二压力控制器14及压力采集器17相互配合实现,若第一压力控制器5、第二压力控制器14和压力采集器17均无信号输出时,表明测量装置内的气体和水分已排空。

在步骤S3中,根据记录的岩样温度、电阻和核磁共振弛豫时间,计算岩样完全饱和水时的电阻率、地层因素和孔隙半径:

rc=ρFST2 (3)

其中,T为岩样完全饱和水时的岩样温度,℃;Ro为岩样完全饱和水时的电阻率,Ω·m;r0为岩样完全饱和水时的电阻,Ω;c为电极9系数(c=1.072);F为地层因素;Rw为地层水电阻率,Ω·m;φ为孔隙度;m为胶结指数;a为岩性系数;a1、b1为常数;T2为核磁共振横向弛豫时间;ρ为岩石横向表面弛豫率;S/V表示孔隙比表面;FS为孔隙形状因子(对球形孔隙,FS=3;对柱状喉道,FS=2);rc为孔隙半径,μm。

在步骤S4中,开启第二阀门2,采用围压泵13给岩样施加设定围压后,开启第一阀门1和第三阀门3,当测量装置内的压力达到设置压力时,每隔设定时间记录一次岩样的温度、电阻和T2谱。

在步骤S5中,当与测量瓶15连接的管道无水流出时,关闭第二阀门2和第三阀门3,并记录岩样处于第一个点含水饱和度下测量瓶15的重量及毛管压力、岩样温度、电阻和T2谱。

其中,步骤S4和步骤S5中设定围压的判断主要是通过第二压力控制器14采集的气压进行判断,若是第二压力控制器14采集的气压达到设定围压,则关闭围压泵13;设置压力的判断主要通过第一压力控制器5采集的气压进行判断,若第一压力控制器5采集的气压达到设置压力,则关闭高压氮气储罐4。

在步骤S6中,打开第二阀门2和第三阀门3,继续采用围压泵13给岩样施加设定围压,并每隔设定时间记录一次岩样的温度、电阻和核磁共振弛豫时间;

当与测量瓶15连接的管道无水流出时,关闭第二阀门2和第三阀门3,记录岩样处于第二个点含水饱和度下测量瓶15的重量及毛管压力、岩样温度、电阻和核磁共振弛豫时间。

管道无水流出的判断主要是通过压力采集器17采集的信号进行确定,若是压力采集器17不输出信号,则无液体流过,表明管道无水流出。

在步骤S7中,重复步骤S6,得到第三个点含水饱和度下测量瓶15的重量及毛管压力、岩样温度、电阻和核磁共振弛豫时间,之后关闭第一阀门1、第二阀门2和第三阀门3,取出岩样;

在步骤S8中,分别计算岩样在第一个点含水饱和度、第二个点含水饱和度和第三个点含水饱和度时的电阻率和孔隙半径:

rcx=ρFST2x (6)

其中,Rtx为岩样在第x个点含水饱和度下的电阻率,Ω·m;rx为岩样在第x个点含水饱和度下的电阻,Ω;Tx为岩样在第x个点含水饱和度下的温度;rcx为岩样在第x个点含水饱和度下的孔隙半径;T2x为岩样在第x个点含水饱和度下的核磁共振横向弛豫时间;Swpx为岩样的第x个点含水饱和度;Sw0为岩样的初始含水饱和度;mx为岩样在第x个点含水饱和度下的测量瓶15的重量;ρw为水的密度;VP为岩样的空隙体积;m'1为岩样的饱和重;m'0为岩样的干重;

在步骤S9中,选取多根不同的岩样,重复步骤S1至S3,采用不同岩样得到的地层因素计算公式和胶结指数的计算公式计算岩性系数a和胶结指数m;

在步骤S10中,根据同一个岩样的多个点含水饱和度及该含水饱和度下的电阻率,计算岩样的饱和度指数和岩性系数:

其中,n为岩样的饱和度指数;b为岩样岩性系数;RI为电阻率增大系数。

实施时,本方案优选当致密储层为含气储层或含油储层时,其含气饱和度或含油饱和度的计算公式为:

其中,Sqx为第x个点含气饱和度,Syx为第x个点含油饱和度。

实施时,本方案的测量岩石电性参数的方法还包括根据绘制的毛管压力与电阻率的曲线,计算电阻率幂指数β:

其中,Pcx为第x个点的含水饱和度下的毛管压力,MPa;

测量岩石电性参数的方法还包括构建毛管压力与孔隙半径之间的函数关系:

其中,σ为流体界面张力;θ为润湿接触角;

根据记录的T2谱和与其对应的电阻率,计算核磁拟合指数nt2:

其中,e为自然对数。

综上所述,本方案通过毛管压力电性联测仪及核磁共振仪7对岩样T2谱分布、毛管压力及岩样电阻进行高精度、高效率、易操作地实时检测,并通过测量岩石电性参数的方法快速地得到评价岩石性能的多个岩石电性参数,从而实现对致密储层含油气饱和度进行有效评价。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1