一种SiO2@Ag光子晶体膜的制备方法与流程

文档序号:17467316发布日期:2019-04-20 05:35阅读:359来源:国知局
一种SiO2@Ag光子晶体膜的制备方法与流程

本发明属于贵金属纳米材料领域,具体涉及一种sio2@ag光子晶体膜的制备方法。



背景技术:

拉曼光谱具有抗干扰能力强、无损检测、不需要特殊制备样品、不受水和溶剂的干扰等诸多优点,在化学、生物和环境等监测分析上有重要应用。贵金属纳米材料,具有独特的能级结构,能够发生表面等离子体共振,产生局域增强的电磁场,使吸附在其表面的分子的拉曼信号大幅度增强。因此,贵金属常用来作表面増强拉曼散射的基底。表面增强拉曼散射能使样品的拉曼散射强度増强几个数量级,合适的基底是实现表面增强拉曼的重要前提。目前,研究比较多的金、银作为拉曼基底存在增强拉曼"热点"分布无规律,重复性不好的缺点。因此,亟需制备出贵金属纳米有序阵列作为拉曼基底来产生稳定的拉曼信号。但是,贵金属纳米阵列的制备存在制备过程复杂及成本高的缺点,限制了它们的广泛应用。

光子晶体在空间上可负载大量的贵金属纳米颗粒,周期性排列使贵金属纳米颗粒规律排布,增加了基底的重复性。而且,周期性结构中存在很多缝隙,入射光激发等离子体基元会被这些缝隙捕获,在缝隙处产生强的电磁场,能很大程度增强sers效应。因此,开发成本低廉、简便的制备均匀、稳定的拉曼活性基底的方法具有重要的科学意义。



技术实现要素:

本发明的目的是提供一种具有分散性良好、粒径均一、拉曼活性稳定的sio2@ag光子晶体膜,并提供其制备方法。

为了实现上述技术问题,本发明采用的技术方案是,一种sio2@ag光子晶体膜的制备方法,包括以下步骤:

步骤一,氨水用蠕动泵以恒定速率滴加到正硅酸四乙酯的乙醇溶液中,反应1~2h,离心分离,得到sio2纳米微球;

步骤二,将十四烷基三甲基溴化铵(ttab)加入到步骤一制备的sio2纳米微球的水溶液混合搅拌均匀,形成混合溶液;

步骤三,将银-氨溶液加入到步骤二的混合溶液中静置处理,随后转入恒温油浴的超声装置中反应1~4h,离心洗涤,制得sio2@ag纳米微球。

步骤四,将载玻片清洗干净烘干备用,在烧杯中配制一定浓度的sio2@ag分散液,超声处理至分散均匀后,垂直插入基片放入恒温的真空干燥箱中,静置组装即得到sio2@ag光子晶体膜。

作为优选,所述步骤一中氨水的浓度为2~10mol/l。

优选地,所述步骤一中正硅酸四乙酯和乙醇的体积比为1:6~1:12,氨水和乙醇的体积比为1:6~1:10。

具体地,所述步骤一中氨水用蠕动泵以1~7rpm的速率滴加到正硅酸四乙酯的乙醇溶液中。

进一步地,所述步骤二中所取步骤一中sio2纳米微球与ttab的质量比为1:100~1:50。

具体地,所述步骤三中银氨溶液取硝酸银0.01g~0.1g,氨水的浓度为3mol/l~14.5mol/l配置而成。

优选地,所述步骤三中银氨溶液和步骤二中的混合溶液体积比为1:60~1:20。

进一步,所述步骤三中银-氨溶液加入到步骤二的混合溶液中需静置处理的时间为1~20min。

优选地,所述步骤三中油浴的温度为60~100℃。

进一步,所述步骤四中载玻片需经过浓硫酸与双氧水二者体积比为2:1于130-150℃下煮沸浸泡24h后,再用高纯水和乙醇超声清洗10~20min后烘干后作为光子晶体膜的基片使用。

优选地,所述步骤四烧杯中配制的sio2@ag分散液浓度为0.5g/l-20g/l。

优选地,所述步骤四中基片需垂直插入溶液中。

优选地,恒温的真空干燥箱温度为40~65℃

有益效果:

1.本发明的sio2@ag光子晶体膜,制备过程中采用一种典型的单链阳离子表面活性剂ttab,由于ttab在溶液中由于碳氢链的疏水作用能够平衡极性的静电排斥作用,形成球状的胶束,因而作为sio2上进一步生长ag颗粒的模板制备出来的ag纳米颗粒包覆均匀,颗粒大小可控,从而保证了作为sers基底较高的sers增强信号。

2.通过sio2@ag纳米微球的制备,然后组装成为光子晶体膜,因而能够作为良好的sers基底,避免了sers信号的重复性差,测量信号不稳定等弊端。

3.本发明的制备方法操作简单、成本低廉、制备出的产品结构可控;

附图说明

图1为实施例1制备得到的sio2@ag单个微球的扫描电子显微镜图;

图2为实施例1制备得到的sio2@ag光子晶体膜的扫描电子显微镜图;

图3为实施例1制备得到的sio2@ag复合微球的透射电子显微镜图;

图4为实施例1制备得到的sio2@ag光子晶体的edax图;

图5为实施例1制备得到的sio2@ag光子晶体膜上20个位点的r6g拉曼信号图谱;

图6为实施例2制备得到的sio2@ag光子晶体膜的扫描电子显微镜图;

图7为实施例3制备得到的sio2@ag光子晶体膜的扫描电子显微镜图。

具体实施方式

为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。

实施例1

一种sio2@ag光子晶体膜的制备方法,包括以下步骤:

步骤一,氨水用蠕动泵以恒定速率滴加到正硅酸四乙酯的乙醇溶液中,反应1~2h,离心分离,得到sio2纳米微球;步骤二,将十四烷基三甲基溴化铵(ttab)加入到步骤一制备的sio2纳米微球的水溶液混合搅拌均匀,形成混合溶液;步骤三,将银-氨溶液加入到步骤二的混合溶液中静置处理,随后转入恒温油浴的超声装置中反应1~4h,离心洗涤,制得sio2@ag纳米微球。步骤四,将载玻片清洗干净烘干备用,在烧杯中配制一定浓度的sio2@ag分散液,超声处理至分散均匀后,垂直插入基片放入恒温的真空干燥箱中,静置组装即得到sio2@ag光子晶体膜。

具体的,所述步骤一中氨水的浓度为6mol/l。

进一步的,所述步骤一中正硅酸四乙酯和乙醇的体积比为1:8,氨水和乙醇的体积比为1:6。

作为优选,所述步骤一中氨水用蠕动泵以3rpm的速率滴加到正硅酸四乙酯的乙醇溶液中。

具体的,所述步骤二中ttab取1.5g。

进一步的,所述步骤二中所取sio2与ttab的质量比为1:80。

作为优选,所述步骤三中配置银氨溶液取硝酸银0.08g,氨水的浓度为10mol/l。

进一步的,所述步骤三中银氨溶液和步骤二中的混合溶液体积比为1:30.

作为优选,所述步骤三中银-氨溶液加入到步骤二的混合溶液中需静置处理10min。

作为优选,所述步骤三中油浴的温度设置为80℃。

进一步,所述步骤四中载玻片经过浓硫酸与双氧水二者体积比为2:1于150℃下煮沸浸泡24h后,再用高纯水和乙醇超声清洗10~20min后烘干后作为光子晶体膜的基片使用。

优选地,所述步骤四烧杯中配制的sio2@ag分散液浓度为2g/l。

优选地,所述步骤四中基片需垂直插入溶液中。

优选地,恒温的真空干燥箱温度为50℃

表征测试:实施例1制备的sio2@ag光子晶体的高倍扫描电子显微镜图如图1所示,从图1可以看出,复合微球尺寸在450nm左右,有大量ag颗粒包裹在表面,且ag纳米颗粒约为18nm左右,ag纳米颗粒完整的包覆在sio2表面;实施例1制备的sio2@ag光子晶体膜的扫描电子显微镜图如图2所示,从图2可以看出,组装得到的sio2@ag光子晶体尺寸均一,分散性良好,呈现矩阵排列,光子晶体膜呈现单层平铺效果;实施例1制备得到的sio2@ag光子晶体透射电子显微镜图如图3所示,从图3可以看出,较深颜色的颗粒状是ag纳米颗粒,其镶嵌在sio2微球表面,证明该制备方法使得ag纳米颗粒成功的包覆在sio2微球表面;实施例1制备得到的sio2@ag光子晶体的edax图如图4所示,从图中可以看出,谱图中有明显的ag、o、si元素,且没有其他元素存在,其中图4的横坐标单位为kev(千电子伏特),图4的纵坐标单位了cps/ev(每秒计数量/电子伏特)。对实施例1制备得到的sio2@ag光子晶体膜分别选取20个点进行拉曼信号重复性检测,图5中可以看出20个位点的r6g拉曼信号基本保持一致,因而组装后的光子晶体膜的特殊结构保证了拉曼信号检测的稳定性。

实施例2

一种sio2@ag光子晶体膜的制备方法,包括以下步骤:

步骤一,氨水用蠕动泵以恒定速率滴加到正硅酸四乙酯的乙醇溶液中,反应1~2h,离心分离,得到sio2纳米微球;步骤二,将十四烷基三甲基溴化铵(ttab)加入到步骤一制备的sio2纳米微球的水溶液混合搅拌均匀,形成混合溶液;步骤三,将银-氨溶液加入到步骤二的混合溶液中静置处理,随后转入恒温油浴的超声装置中反应1~4h,离心洗涤,制得sio2@ag纳米微球。步骤四,将载玻片清洗干净烘干备用,在烧杯中配制一定浓度的sio2@ag分散液,超声处理至分散均匀后,垂直插入基片放入恒温的真空干燥箱中,静置组装即得到sio2@ag光子晶体膜。

具体的,所述步骤一中氨水的浓度为6mol/l。

进一步的,所述步骤一中正硅酸四乙酯和乙醇的体积比为1:8,氨水和乙醇的体积比为1:6。

作为优选,所述步骤一中氨水用蠕动泵以3rpm的速率滴加到正硅酸四乙酯的乙醇溶液中。

具体的,所述步骤二中ttab取1.5g。

进一步的,所述步骤二中所取sio2与ttab的质量比为1:50。

作为优选,所述步骤三中配置银氨溶液取硝酸银0.1g,氨水的浓度为12mol/l。

进一步的,所述步骤三中银氨溶液和步骤二中的混合溶液体积比为1:30.

作为优选,所述步骤三中银-氨溶液加入到步骤二的混合溶液中需静置处理10min。

作为优选,所述步骤三中油浴的温度设置为80℃。

进一步,所述步骤四中载玻片经过浓硫酸与双氧水二者体积比为2:1于150℃下煮沸浸泡24h后,再用高纯水和乙醇超声清洗10~20min后烘干后作为光子晶体膜的基片使用。

优选地,所述步骤四烧杯中配制的sio2@ag分散液浓度为2g/l。

优选地,所述步骤四中基片需垂直插入溶液中。

优选地,恒温的真空干燥箱温度为45℃

表征测试:实施例2制备的sio2@ag光子晶体膜的扫描电子显微镜图如图6所示,从图6可以看出,本实施例中sio2@ag光子晶体的外壳层ag纳米颗粒较大,颗粒大小约为47nm,表面活性剂ttab的用量对ag颗粒的生长有着明显的影响,同时银氨溶液的配比也对ag颗粒的形貌产生一定的影响。尽管ag颗粒较大,在本方法的组装过程,sio2@ag光子晶体膜仍然能够呈现单层平铺排列;

实施例3

一种sio2@ag光子晶体膜的制备方法,包括以下步骤:

步骤一,氨水用蠕动泵以恒定速率滴加到正硅酸四乙酯的乙醇溶液中,反应1~2h,离心分离,得到sio2纳米微球;步骤二,将十四烷基三甲基溴化铵(ttab)加入到步骤一制备的sio2纳米微球的水溶液混合搅拌均匀,形成混合溶液;步骤三,将银-氨溶液加入到步骤二的混合溶液中静置处理,随后转入恒温油浴的超声装置中反应1~4h,离心洗涤,制得sio2@ag纳米微球。步骤四,将载玻片清洗干净烘干备用,在烧杯中配制一定浓度的sio2@ag分散液,超声处理至分散均匀后,垂直插入基片放入恒温的真空干燥箱中,静置组装即得到sio2@ag光子晶体膜。

具体的,所述步骤一中氨水的浓度为6mol/l。

进一步的,所述步骤一中正硅酸四乙酯和乙醇的体积比为1:8,氨水和乙醇的体积比为1:6。

作为优选,所述步骤一中氨水用蠕动泵以5rpm的速率滴加到正硅酸四乙酯的乙醇溶液中。

具体的,所述步骤二中ttab取1.5g。

进一步的,所述步骤二中所取sio2与ttab的质量比为1:80。

作为优选,所述步骤三中配置银氨溶液取硝酸银0.08g,氨水的浓度为3mol/l。

进一步的,所述步骤三中银氨溶液和步骤二中的混合溶液体积比为1:30.

作为优选,所述步骤三中银-氨溶液加入到步骤二的混合溶液中需静置处理20min。

作为优选,所述步骤三中油浴的温度设置为70℃。

进一步,所述步骤四中载玻片经过浓硫酸与双氧水二者体积比为2:1于150℃下煮沸浸泡24h后,再用高纯水和乙醇超声清洗10~20min后烘干后作为光子晶体膜的基片使用。

优选地,所述步骤四烧杯中配制的sio2@ag分散液浓度为1g/l。

优选地,所述步骤四中基片需垂直插入溶液中。

优选地,恒温的真空干燥箱温度为50℃

表征测试:实施例3制备的sio2@ag光子晶体的扫描电子显微镜图如图7所示,从图7可以看出,sio2@ag光子晶体大小尺寸均匀,ag颗粒均匀的包覆在sio2内核的外层,从整体上看sio2@ag光子晶体膜呈现大面积平铺矩阵排列,控制组装时真空干燥箱的蒸发温度,有利于组装的精确进行。

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1