一种提高核磁共振谱图分辨率的化学位移放大方法与流程

文档序号:19153374发布日期:2019-11-16 00:21阅读:3018来源:国知局
一种提高核磁共振谱图分辨率的化学位移放大方法与流程

本发明涉及核磁共振方法,尤其涉及一种提高核磁共振谱图分辨率的化学位移放大方法。



背景技术:

核磁共振谱学是一种无创的应用广泛的分析手段。分辨率是核磁共振谱学面临的一个主要挑战之一。由于有限的化学位移范围和由标量偶合引起的信号分裂,信号拥挤甚至重叠在核磁共振谱图中很常见。一个提高谱图分辨率的主要方法在于提高磁场强度。磁场强度越大,核自旋的共振频率就越大,信号就越分散,分辨率也就越高。但是提高磁场强度非常昂贵而且缓慢,而且磁场越强,要进一步提高就越难。提高核磁共振谱图分辨率的方法被提出了很多。常规一维氢谱重叠严重,二维谱乃至多维谱被提出来以提供更广的信号分布。但是在二维谱中,相敏显示不像一维谱那么容易,一些获得相敏二维谱的方法也被提出来。还有一些数据处理的方法,比如线性预测和模式识别,可以进一步提高谱图分辨率。但是数据处理的方法往往有一些适用条件和局限性,因此并没有被广泛使用。



技术实现要素:

本发明所要解决的主要技术问题是提供一种提高核磁共振谱图分辨率的化学位移放大方法,可以获得化学位移放大的谱图。这样信号更加分散,使原来重叠的信号有机会被分离,提高谱图分辨率。

本发明提供的一种提高核磁共振谱图分辨率的化学位移放大方法,主要步骤为:

1)采集样品的核磁共振一维谱;

2)测量样品的90度硬脉冲的脉冲宽度;

3)设置相干选择梯度g1、g2和g3的强度和持续时间;

4)根据要检测的频率范围设置编码梯度ge的强度,如果只检测一个小区域,ge置零即可;

5)把一维谱中要检测的氢核的中心位置设为选择性180度脉冲的中心频率,根据信号分布情况确定选择性180度脉冲的脉冲宽度,测量选择性脉冲的功率;

6)设置一次实验中的数据块长度δ,这也是t1的增量。检测的区域范围越大,δ要越小;

7)确定间接维采样点数ni,即t1的递增次数。

8)设置λ的值,即为化学位移放大倍数;

9)使用所测的90度硬脉冲作为脉冲序列的激发脉冲,然后施加第一个选择性180度硬脉冲,在延时(λ-1)*t1/2时间后,施加选择性180度脉冲和第二个180度脉冲,然后延时第二个(λ-1)*t1/2时间。再施加间接维演化时间t1,然后开始采集核磁共振信号;

10)完成实验后,对于每个t1,我们把开始的δ时间的数据取出来,依次拼接得到新的一维信号,再进行傅里叶变换,就得到化学位移放大的一维谱。

在一较佳实施例中:拼接后得到的一维信号的总长是ni*δ,得到的谱图中化学位移被放大λ倍。

在一较佳实施例中:实验采用的相位循环是:φ1=x,-x,-x,x;φ2=x,-x;φ3=-x,x;φr=x,-x,-x,x,这里x是指x方向。

本发明提供一种提高核磁共振谱图分辨率的化学位移放大方法,在间接维利用同核去偶产生一段纯化学位移演化时间,这样化学位移有了一段额外演化时间。标量偶合经过的是正常的间接维时间演化,没有变化。化学位移放大而偶合不变,使得总体上信号更加分散了,分辨率得到提高。该方法可以只使用选择性脉冲对一个局部小区域进行化学位移放大,这样灵敏度不会损失。在有需要的情况下,也可以在选择性脉冲下配合使用编码梯度,这样可以实现宽带去偶,对一个更大的区域实现化学位移放大。利用化学位移放大,原来重叠的信号有机会被分离,这样就能分析每个信号各自的多重峰模式,还能对各个信号进行积分以获得定量信息。

附图说明

图1为提高核磁共振谱图分辨率的化学位移放大方法的脉冲序列图。

图2为薄荷醇的常规核磁共振一维谱。

图3为对氢核8和9的小区域进行化学位移放大的结果。

图4为对图2中的虚线框里的区域进行化学位移放大的结果。

具体实施方式

下文结合附图和实施例,对本发明做进一步说明:

一种提高核磁共振谱图分辨率的化学位移放大方法,主要步骤为:

1)采集样品的核磁共振一维谱;

2)测量样品的90度硬脉冲的脉冲宽度;

3)设置相干选择梯度g1、g2和g3的强度和持续时间;

4)根据要检测的频率范围设置编码梯度ge的强度,如果只检测一个频率,ge置零即可;

5)把一维谱中要检测的氢核的中心位置设为选择性180度脉冲的中心频率,根据信号分布情况确定选择性180度脉冲的脉冲宽度,测量选择性脉冲的功率;

6)设置一次实验中的数据块长度δ,这也是t1的增量。检测的区域范围越大,δ要越小;

7)确定间接维采样点数ni,即t1的递增次数。

8)设置λ的值,即为化学位移放大倍数;

9)使用所测的90度硬脉冲作为脉冲序列的激发脉冲,然后施加第一个选择性180度硬脉冲,在延时(λ-1)*t1/2时间后,施加选择性180度脉冲和第二个180度脉冲,然后延时第二个(λ-1)*t1/2时间。再施加间接维演化时间t1,然后开始采集核磁共振信号;

10)完成实验后,对于每个t1,我们把开始的δ时间的数据取出来,依次拼接得到新的一维信号,再进行傅里叶变换,就得到化学位移放大的一维谱。

拼接后得到的一维信号的总长是ni*δ,得到的谱图中化学位移被放大λ倍。

实验采用的相位循环是:φ1=x,-x,-x,x;φ2=x,-x;φ3=-x,x;φr=x,-x,-x,x,这里x是指x方向。

根据上述的方法进行具体的操作如下:

本实施例使用varian500mhz核磁共振谱仪,样品为0.1mol/l薄荷醇溶于氘代氯仿(cdcl3)的溶液,使用的是如图1所示的脉冲序列。

步骤一:采集一张样品的核磁共振一维氢谱,如图2所示;

步骤二:测量样品的90度硬脉冲的脉冲宽度,为10.3μs;

步骤三:设置相干选择梯度g1、g2和g3的强度为g1=2.74g/cm,g2=10.43g/cm,g3=4.76,持续时间都为0.5毫秒;

步骤四:根据要检测的频率范围设置编码梯度ge的强度。对于图3,只检测氢核8和9的小区域,ge=0;对于图4,检测的是图2中的虚线框里的区域,ge=0.096g/cm;

步骤五:使用rsnob形状的选择性脉冲,把一维谱中要检测的氢核的中心位置设为选择性180度脉冲的中心频率。根据信号分布情况确定选择性180度脉冲的脉冲宽度为50毫秒,测量选择性脉冲的功率为4db;

步骤六:设置一次实验中的数据块长度δ,也是t1的增量,对图3的实验δ为10毫秒,对图4的实验δ为1毫秒;

步骤七:确定间接维采样点数,对图3的实验ni为80,对图4的实验ni为600;

步骤八:设置λ的值,数值为每个实验结果图中标示的λ值;

步骤九:使用所测的90度硬脉冲作为脉冲序列的激发脉冲,然后施加第一个选择性180度硬脉冲,在延时(λ-1)*t1/2时间后,施加选择性180度脉冲和第二个180度脉冲,然后延时第二个(λ-1)*t1/2时间。再施加间接维演化时间t1,然后开始采集核磁共振信号;

步骤十:完成实验后,对于每个t1,我们把开始的δ时间的数据取出来,依次拼接得到新的一维信号,再进行傅里叶变换,就得到化学位移放大的一维谱。

图3展示了对氢核8和9的小区域进行化学位移放大的结果。可以看到,氢核8和9原来有部分重叠,呈现出一个虚假的三重峰,不利于信号裂分模式的提取和定量分析。在化学位移放大倍数逐渐增大的实验结果中,我们可以看到氢核8和9的信号逐渐分散开,呈现出两个二重峰,并且从分离的信号里我们可以方便地积分以进行定量分析。图4展示的是对图2中的虚线框里的区域进行化学位移放大的结果,利用了编码梯度ge实现了更大区域地放大。可以看到,检测区域的信号都更加分散了。由于使用了编码梯度,信噪比会有所下降。在实际使用中,可以在要检测的区域范围和信噪比之间寻找平衡。

综述所述,本发明提供的一种提高核磁共振谱图分辨率的化学位移放大方法,可以使原来重叠的信号分散开,方便我们提取正确的信号裂分模式和进行定量分析。

上文所述,仅为本发明较佳的实施范例,不能依此限定本发明实施的范围。即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1