用于确定表面拓扑和相关联的颜色的装置和方法与流程

文档序号:21108001发布日期:2020-06-16 21:29阅读:179来源:国知局
用于确定表面拓扑和相关联的颜色的装置和方法与流程

相关申请的交叉引用

本专利申请要求于2018年10月10日提交的美国非临时申请no.16/154,805的权益和优先权,该申请出于所有目的通过引用并入本文。

本申请一般而言涉及用于测量三维(3d)和彩色图像的设备并且,更具体而言,涉及适用于使用3d相机的光路的一部分进行颜色测量而不干扰3d测量的彩色相机。



背景技术:

在三维测量中,可以针对包括口腔内的测量的多种应用获得物体的表面点的位置。用于牙齿的直接光学测量和诸如牙冠和假牙之类的产品的制造的方法是已知的。在本文中,可以获得数字数据并将其用于牙齿替换的计算机辅助设计(cad)或计算机辅助制造(cam),而不必对牙齿进行任何物理印象。这些方法包括例如共聚焦测量技术,诸如在us6697164b1中描述的。在本文中,可以提供本质上是单色的数字三维表面模型而没有任何颜色信息。

在一些系统中,用于3d和颜色测量的3d相机系统可以使用与用于3d测量的光学器件相同的用于颜色测量的光学器件。在这样的系统中,用于3d测量和颜色测量的光路可以被配置为将光分布到不同的传感器上。但是,可能发生由于同时使用至少一些光学器件用于不同目的(照明、检测等)而引起的光散射和反射,从而实际上降低了彩色图像的图像质量。

美国专利申请no.16003592和美国专利申请no.16003628公开了用于在相机中生成用于3d测量的动态投射图案的设备、方法和系统。出于背景公开的目的,它们通过引用整体并入本文。

美国专利no.3681519a公开了一种用于执行光学3d测量的手持式牙科相机,其包括光源、消色差物镜和颜色传感器,其中光源可以被配置为发射可以借助于消色差物镜聚焦到物体表面上的射束。然后,射束可以被表面反射,并且反射的射束可以被颜色传感器检测以进行测量。

美国专利no.7,787,132b2描述了一种用于使用多色点光源的阵列、平面检测器矩阵、用于侧向光谱分离的分束器以及用于照明和记录物体的物镜进行物体的快速三维测量的彩色共焦方法和装置。可以生成光谱定义的参考光束,通过参考射束路径注入检测射束路径并且,在光谱分裂之后,聚焦在检测器矩阵上作为参考图像点,其中可以在检测器矩阵上数字地定义侧向移位的子矩阵,用于对物体光的光谱分析,其中子矩阵可以被实现为用于物体形状的三维测量的光谱单元格(cell)。

美国专利申请no.14,268,201说明了一种执行物体的三维扫描的方法,包括将光学对比粉末施加到物体上并用光照亮物体。生成与物体对应的第一和第二二维(2d)彩色图像数据,并且可以使用第一和第二2d彩色图像数据生成与该物体对应的第一和第二2d单色图像数据。然后可以使用第一和第二单色2d图像数据生成与物体对应的3d数据,并且可以通过将颜色信息添加到3d数据来生成与该物体对应的彩色3d图像数据。

美国专利申请no.10,007,715示出了用于获取表面拓扑的方法和装置,其中被获取的表面可以由具有光图案的照明源从一个光学角度照亮,并且从表面反射的光可以由图像传感器从可以与照明的角度不同的光学角度捕获。获得的图像可以是具有叠加在表面上的一个或多个图案的表面。可以用处理器基于构图的图像数据、照明源和成像传感器之间的已知间隔以及关于如何从照明源投射光图案的知识来计算表面拓扑。



技术实现要素:

通过利用共焦测量和光学布置产生物体的至少一部分的彩色图像的设备和方法,可以克服与前述相关联的现有限制以及其它限制,所述光学布置包括部署在用于为颜色测量提取“少”量光的颜色测量光路中的提取/偏转镜,所述少量光是从3d测量光路中提取的,使得3d测量不会受颜色测量的影响或基本上不受影响,并且使得内部反射对彩色图像的影响可以最小化。“颜色测量”在下文中可以被用于指拍摄物体的彩色图像和/或彩色实时取景。颜色测量光路和3d测量光路可以至少在设备的物体侧重合,并且为了在基本上不影响3d测量的情况下提取少量光,可以将设备构造成具有大的景深以用于颜色测量,并且提取镜可以被配置为具有小于用于3d测量的射束直径(例如,小于20%)的尺寸,如下文所解释的。通过将提取镜定位在颜色测量光路上,而不是例如使用具有分束器的全区域提取,仅在3d测量期间对物体10的深度/3d信息贡献最低的反射的射束可以被干扰(从3d光路中移除并用于颜色测量)。

根据本发明的一个方面,可以提供一种用于确定物体的表面拓扑和相关联颜色的设备,包括:3d测量光路;颜色测量光路,被配置为具有与相机的3d测量范围一样大(即,等于或小于,例如大约75%,3d测量范围,)的景深;提取镜,部署在颜色测量光路内并被配置为提取监视射束的第一部分;光源,用于提供照亮物体的照明射束;可变成像光学器件,布置在设备内,以将照明射束聚焦到物体上并适于改变设备的焦平面的位置,使得照明射束的特征在焦平面处以最大对比度投射到物体上,照明射束作为监视射束从物体反射;其中颜色测量光路具有部署在其中的彩色图像传感器,该彩色图像传感器适于检测监视射束的第一部分以形成彩色图像,其中3d测量光路具有部署在其中的3d图像传感器,3d图像传感器适于检测监视射束的第二部分以形成3d图像。

根据本发明的另一方面,可以提供包括以下当中的一种或多种组合的设备:(i)其中光源在第一偏振方向上偏振,(ii)还包括部署在所述颜色测量光路内的偏振滤光器,其在垂直于第一偏振方向的第二偏振方向上偏振颜色测量光路中的光,以阻挡内部反射到达所述彩色图像传感器,(iii)其中颜色测量光路和3d测量光路至少在设备的物体侧重合,(iv)还包括位于提取镜的共轭平面中的中继光学器件中的彩色孔径光阑,(v)其中彩色孔径光阑具有被配置为使得获得颜色测量光路的大景深(大约与相机的3d测量范围一样大)的数值孔径,(vi)还包括用于将彩色图像映射到3d模型的信号处理单元,(vii)还包括用于显示物体的3d彩色表示的显示器,(viii)其中光源被配置为投射白光用于颜色测量,(ix)其中光源被配置为投射蓝光用于3d测量。

在本文的另一方面,可以提供一种用于确定物体的表面拓扑和相关联颜色的装置,包括:扫描单元,适于提供物体的深度数据用于3d测量;成像单元,适于提供与所述深度数据相关联的所述物体的彩色图像数据用于颜色测量;其中成像单元适于具有提取镜,提取镜用于提取从物体反射的监视射束的一部分,其中成像单元具有被配置为与相机的3d测量范围大约一样大的景深,使得监视射束的所述部分包括对物体的3d信息贡献最小的射线,使得3d测量不受干扰或基本上不受干扰。

在本发明的又一方面,可以提供一种用于确定物体的表面拓扑和相关联颜色的方法,包括:提供3d测量光路和颜色测量光路,使得颜色测量光路的景深被配置为与相机的3d测量范围大约一样大;控制设备的光源以生成用于照亮物体以进行颜色测量和3d测量的照明射束,控制设备的可变成像光学器件将照明射束聚焦到物体上并改变设备的焦平面的位置,使得照明射束的特征在焦平面上以最大对比度投射到物体上,从来自物体的照明射束的反射中获得监视射束,提取监视射束的第一部分用于所述物体的颜色测量,使得所述第一部分包括对物体的3d信息贡献最小的射线,使得3d测量不受干扰或基本上不受干扰。

在本发明的另一方面,可以提供包括以下当中的一种或多种组合的方法;(i)还包括将彩色图像映射到由3d图像形成的3d模型,(ii)还包括使光源以第一偏振方向偏振,(iii)还包括,通过提供在第一偏振方向上偏振的照明射束和部署在所述颜色测量光路内的偏振滤光器,阻挡或基本上阻挡设备中的内部反射到达彩色图像传感器,其中颜色测量光路中的光在垂直于第一偏振方向的第二偏振方向上被偏振,使得提取出的监视射束的大约50%被允许通过,(iv)还包括在设备的平面中形成中间彩色图像,(v)还包括由中继光学器件通过彩色孔径光阑将中间彩色图像成像到彩色图像传感器上,(vi)其中控制光源,使得当焦平面在相机的3d测量范围之外时,所述范围是3d体积的z范围,接通颜色测量光并且在第一预定持续时间内拍摄一个或多个图像用于颜色测量,(vii)其中颜色测量光是白光,(viii)其中控制光源,使得当焦平面在相机的3d测量范围内时,接通3d测量光并且在第二预定持续时间内拍摄一个或多个图像用于3d测量,(ix)其中3d测量光是蓝光。

在本发明的另一方面,可以提供一种用于确定物体的表面拓扑和相关联颜色的系统,包括:至少一个处理器,可操作以:控制设备的光源以生成用于照亮物体的照明射束用于颜色测量和3d测量,控制设备的可变成像光学系统以将照明射束聚焦到物体上并改变设备的焦平面的位置,从来自物体的照明射束的反射中获得监视射束,提取监视射束的第一部分用于所述物体的颜色测量,使得所述第一部分包括对物体的3d信息贡献最小的射线,使得3d测量被干扰或基本上被干扰。

与其它设备/技术相比,所述设备、方法和系统对于减少彩色图像中生成的噪声可以是有用的,并且与其它设备/技术相比,可以在3d图像中产生更好的数据质量和/或更高的z分辨率。

下面参考附图详细描述另外的特征和优点,以及本文的各种实施例的结构和操作。

附图说明

从本文下面给出的详细描述和附图中将更加全面地理解示例实施例,附图中相同的元件由相同的标号表示,这些标号仅以说明的方式给出,因此不限制本文的示例实施例,并且其中:

图1是图示本发明的示例性实施例的设备的框图。

图2图示了图1的框图的一部分,示出了用于颜色测量的光路。

图3图示了图1的框图的一部分,示出了根据本发明示例性实施例的用于3d测量的光路。

图4是示出根据本发明示例性实施例的可移动成像光学器件的焦平面的位置与时间之间的关系的曲线图。

图5是示出根据本发明示例性实施例的方法的流程图。

图6图示了根据本发明示例性实施例的计算机系统。

附图中不同的图可以具有至少一些可以相同的标号,以便识别相同的部件,但是下面可以不针对每个附图提供每个这样的部件的详细描述。

具体实施方式

用于3d颜色测量的设备

根据本文描述的示例方面,可以实现用于利用3d颜色测量的光学布置和共焦测量的设备101。设备101可以包括3d相机系统和彩色相机系统。设备101还可以使用所述共焦测量和光学布置来产生物体10或物体的至少一部分的3d彩色图像(所述表面的表面拓扑和一个或多个对应颜色)。光学布置可以包括部署在颜色测量光路4(图2中所示)中的提取镜7,用于提取用于由彩色相机进行的颜色测量的最小量的光,该最小量的光是从来自3d测量光路6(图3中所示)的光中提取的,使得使用3d相机的3d测量可以不受颜色测量的影响或基本上不受其影响,并且使得内部反射可以最小化。在本文中,(i)彩色相机和3d相机可以至少在设备的物体侧20共享光学器件,(ii)颜色测量光路4和3d测量光路6可以至少在设备的所述物体侧20重合,以及(iii)为了在不影响3d测量的情况下从监视射束31提取最小量的光,可以将设备101构造成具有用于颜色测量的景深25和/或用于3d测量的相对小的焦深24,如下文中所解释的。焦深24可以是例如景深25的大约1/100。为了获得所述“最小”量的光,提取镜7可以被配置为具有小于3d测量光路6直径(例如,小于50%,或小于40%,优选地小于30%,更优选地小于20%,甚至更优选地小于10%,但仍大于0%)的尺寸。最小量的光可以包括监视射束或用于3d测量的监视射束的一部分的小于25%(例如小于16%,优选地小于9%,更优选地小于4%,甚至更优选地小于1%),但大于0%。提取镜7可以类似地小于(例如,小于20%)但是大于(例如,大于0%)孔径光阑8的直径。

在本发明的实施例中,用于颜色测量的景深25可以是大约15mm(+/-20%)。相机的3d测量范围可以是大约20mm(+/-20%),3d测量的焦深24可以是大约0.5mm(+/-20%)并且提取镜7的直径可以是大约2mm(+/-20%)。

在共焦测量中,诸如投射的光图案之类的光可以用于在待测量的物体10的表面上生成光学特征,并且可以使用根据共焦/焦深原理操作的光学3d测量方法来测量物体10。在本文中,来自光源11(诸如具有微透镜阵列的led光源)的光(例如,时间变化的光或静态图案)可以通过分束器立方体9投射到成像光学器件23上并且通过系统孔径光阑8和透镜32投射到物体10上。随后,光可以被物体10反射,以成像到3d传感器2上。分束器立方体9可以将光源11的传出射束与物体10的传入监视射束31分离。对于3d测量,可变成像光学器件23可以具有焦深24,焦深24可以远小于物体10的厚度,使得它可以用在共焦3d测量中以用于投射和检测。可变成像光学器件23可以是可移动成像光学器件、液体透镜、柔性透镜等。因此,仅对于物体10的与可变成像光学器件23的焦深24相交的区域,时间变化的光图案可以在3d传感器2上清晰(或具有最大对比度)成像。通过使用可变成像光学器件23,可变成像光学器件23的焦平面可以移动通过物体10的体积。由于可变成像光学系统23不在颜色测量光路4中,因此彩色相机的焦平面可以不受影响。在离焦区域中,光模糊并产生将离焦区域与聚焦区域区分开的恒定平均强度。因此,仅物体的聚焦区域/清晰成像区域可以为3d传感器2创建经调制的信号。通过使用各种结构化的照明图案、共焦测量/焦深原理、以及降噪和数据密度增加设置/技术,可以测量物体的3d表面轮廓。而且,通过以预定频率进行调制,可以仅检测与那个频率对应的信号以进行进一步处理。

但是,由3d传感器2捕获的图像可能不包含颜色信息。因此,可以使用分离的彩色图像传感器1来检测物体10的颜色信息。3d彩色相机可以同时使用相同的光学器件进行照明和检测。因此来自壁的光散射和内部反射(诸如由于透镜32的空气/玻璃界面引起的反射,其可以是例如照明射束30和来自提取镜7的边缘的反射的大约0.05-4%)可以在相机内部发生,并在拍摄的任何彩色图像中产生不想要的效果。在根据本发明的实施例中,可以使用提取镜7和系统孔径光阑8后面的偏振器/偏振滤光器26来减少和/或消除光散射/内部反射的影响(诸如例如动态范围和/或彩色图像传感器1上的恒定背景图像的减小)。提取镜可以被用于提取从物体10反射的光的一部分以检测物体10的颜色。然后可以使提取出的光通过偏振器/偏振滤光器26,以阻挡掉具有与照射射束30的偏振相同的偏振的光。一般而言,光的偏振方向可以通过散射/反射来更改,使得仅部分散射(反射)光维持其原始偏振。

在本发明的实施例中,照明射束30可以首先在第一偏振方向上偏振,并且偏振器/偏振滤光器26可以被配置为使得(i)可以防止维持(在第一偏振方向上)内部反射光(诸如由透镜32的表面引起的反射的一部分)的偏振通过偏振器/偏振滤光器26(例如,至少到预定的程度)以及(ii)由于被物体10反射而可以变为非偏振或基本上非偏振或者通过λ四分之一板改变偏振的监视射束31的一部分,可以被允许在被提取镜7提取之后通过偏振滤光器26(即,非偏振监视射束31可以通过偏振器/偏振滤光器26在第二偏振方向上偏振,所述第二偏振方向垂直于第一偏振方向,使得提取出的监视射束31的大约50%被允许通过偏振滤光器26)。但是,来自相机内壁的内部反射/散射光也可以基本上是非偏振的。因此,非偏振内部反射不能被偏振滤光器26完全阻挡。但是,由于所述非偏振内部反射可以主要从提取镜7的中心外部的点开始,因此所述非偏振内部反射可以在彩色孔径光阑3处基本上被阻挡,因为彩色孔径光阑3的孔径被配置为小于提取镜7的图像。因此,可以允许仅来自提取镜7的中心的光通过彩色孔径光阑3。

可以在平面5中形成中间彩色图像。这个中间彩色图像可以由中继光学系统27通过彩色孔径光阑3成像到彩色图像传感器1上以进行颜色测量。

设备101还可以包括计算机系统100,用于生成和显示物体10的3d彩色表示。计算机系统100可以包括信号预处理或处理单元28和获取单元29,并且可以与彩色图像传感器1、3d传感器2、光源11和可变成像光学器件23电连接和/或通信。

在本文的实施例中,在物体10的曝光/扫描期间,信号预处理单元28可以收集彩色图像传感器1和3d传感器2的单个图像帧。然后,它可以将彩色图像传感器1的颜色数据与从3d传感器2的3d数据创建的3d模型进行映射。

用于3d颜色测量的方法

已经描述了图1的设备101的组件,现在将结合图4和5进一步描述操作设备100的方法,图4和5示出了用于3d颜色测量的方法。

现在转到图5,可以通过控制光源11生成照明射束30,以照亮物体10,如步骤s100中所示。照明射束30可以优选地是偏振光束。可以控制可变成像光学器件23的焦平面用于颜色测量和3d测量,如下文所述。

在根据本发明的示例性实施例中,小焦深24可以用于3d测量,并且较大的景深25可以用于颜色测量。可以通过使可变成像光学系统23的焦平面移动通过物体10的体积来进行3d测量。在物体10的离焦区域中,照明射束30模糊并且可以产生将离焦区域与聚焦区域区分开的恒定平均强度。在聚焦区域中,物体10可以创建用于让3d传感器2测量的经调制的信号。由于可以使用大景深25进行颜色测量,因此可以在所述离焦区域处拍摄彩色图像,其中可以创建信号用于颜色测量。

在根据本发明的示例性实施例中,白光可以用于颜色测量,并且蓝光可以用于3d测量。在另一个示例性实施例中,任何颜色都可以用于3d测量,并且可以使用白光或具有其总和为白色的不同颜色的顺序照明(例如,红色、绿色、蓝色)。在本文中,光源11可以在颜色测量光和3d测量光之间切换。图4结合图1示出了可移动成像光学器件的焦平面的位置与时间之间的关系。可以控制可变成像光学器件23,使得当焦平面在3d测量范围(-k到k)之外时,可以在光源11处接通白光并且可以拍摄一个或多个图像用于颜色测量。在本发明的示例性实施例中,焦深24可以随着3d光学器件的焦平面被可变成像光学器件23移动而移动。但是,在这种移动期间,景深25可以保持恒定。在本文中,当焦平面在3d测量范围之外(在范围-k至k之外)时,来自光源11的结构化光可以聚焦在3d测量范围之外并且不能聚焦在3d测量范围内。由于景深25可以在所述3d测量范围内,因此可以拍摄牙齿的彩色图像,使得在所述彩色图像中不能看到结构化照明。在实施例中,可以在预定持续时间内拍摄彩色图像(例如,10ms间隔内的一个或多个图像)。同样,可以控制可变成像光学器件,使得当焦平面在用于3d测量的3d测量范围(-k到k)内时,可以在源11处接通蓝光并且可以拍摄一个或多个图像用于3d测量。在本文中,在3d图像中看到用于3d测量的结构化照明。在本文的实施例中,可以在预定持续时间内拍摄3d图像(例如,在预定时间间隔内的一个或多个图像,例如在30ms间隔内的80个图像)。

在本文的另一个实施例中,3d传感器的电子快门(未示出)可以在彩色图像获取期间闭合。同样,彩色图像传感器的电子快门可以在3d图像获取期间闭合。

在物体10的照明期间,照明射束30可以通过系统孔径光阑8投射并被反射镜12偏转到物体10上。在接收到照明射束30后,物体10可以将照明射束30反射成监视射束31,所述监视射束31通过系统孔径光阑8投射到设备101的传感器侧21中,步骤s200。在传感器侧21处,提取镜7可以将监视射束的一部分朝着偏振滤光器26偏转以用于颜色测量,所述部分与颜色测量光路4对应。与用于3d测量的小焦深24相反,颜色测量可以使用更大的景深25。可以使用小数值孔径(直径)的彩色孔径光阑3来实现大的景深25。提取镜可以位于彩色孔径光阑3的共轭平面中,因此其尺寸可以与彩色光学器件中的颜色孔径光阑直径成比例。因此,使用小彩色孔径光阑直径可以启用小提取镜7。使用小提取镜7,可以仅从3d测量光路6提取少量光。通过使用提取镜7代替例如使用分束器提供全区域提取,可以仅干扰3d测量光学器件的对物点的深度信息贡献最低的射束。如图1中所示,提取镜7的定位可以在3d测量期间阻挡监视射束31的中心射线,但是这会导致一些可接受的成像假象,因为数值孔径不会受影响,因此z分辨率可以保持相同。因此,优选的是将提取镜放置在光轴34的中心附近,如图1和图3中所示,而不是远离光轴34。

如步骤s300中所示,偏振滤光器26可以阻挡内部反射,同时允许监视射束31通过。在本文中,偏振滤光器26阻挡掉偏振维持内部反射,并允许非偏振或基本上非偏振的提取出的监视射束31的垂直部分通过偏振滤光器26。如步骤s400中所示,彩色孔径光阑3可以抑制在内部散射并且否者将传播到彩色图像传感器1上的内部反射。在图像平面5中形成的中间彩色图像可以由中继光学系统27通过彩色孔径光阑3成像到彩色图像传感器1上,如步骤s500中所示。

在获得优选地预定数量的3d图像和彩色图像之后,可以将它们一起映射,其中,例如,可以将彩色图像映射到从3d图像形成的3d模型。在本文中,根据相机校准,可以知道每个3d点在2d彩色图像中对应的内容(即,3d到2d映射)。这个映射可以用于为3d模型中的每个3d数据点找到2d彩色图像中的对应像素。然后可以将这个像素的颜色指派给数据点,并因此可以在被测量的模型的3d视图中显示该颜色。

用于3d颜色测量的计算机系统

已经描述了用于3d颜色测量的设备101,现在将参考图6,其示出了可以根据本文的示例实施例中的至少一些被采用的计算机系统100的框图。在本文的实施例中,计算机系统100可以形成设备101的一部分。在本文的另一个实施例中,计算机系统可以与设备101分离。虽然本文可以根据这个示例性计算机系统100描述各种实施例,但是在阅读本说明书之后,(一个或多个)相关领域的技术人员将明白如何使用其它计算机系统和/或体系架构来实现本公开。

计算机系统100可以包括至少一个计算机处理器122。计算机处理器122可以包括例如中央处理单元、多处理单元、专用集成电路(“asic”)、现场可编程门阵列(“fpga”)等。处理器122可以连接到通信基础设施124(例如,通信总线、交叉条(cross-overbar)设备或网络)。在本文的实施例中,处理器122包括从设备101的信号预处理单元28获得图像堆栈的cpu。该堆栈可以临时存储在存储器中,然后被分析。彩色图像数据可以由处理器122映射到3d模型。在记录的同时移动设备101后,可以形成一系列点云。cpu123可以旋转并平移点云,以给出用于在计算机系统100的显示器接口126上渲染的一致3d模型。在另一个实施例中,cpu可以将由传感器4检测到的图像特征与投射的特征进行匹配,并通过三角测量将它们转换成3d点云,从而每个图像产生单独的点云。在本文中,传感器可以可选地不拥有像素内解调功能。当移动相机时,产生一系列点云。这些点云可以由cpu123单独旋转和平移,以给出一致的3d模型。最终可以在显示器128上渲染这个3d模型。在本文的实施例中,信号预处理单元28可以结合到设备101中,并且在本文的另一个实施例中,信号预处理单元28可以在设备101之外。

显示器接口(或其它输出接口)126可以转发来自通信基础设施124(或来自帧缓冲器(未示出))的视频图形、文本和其它数据,以在显示单元128上显示(在一个示例实施例中,其可以形成或包括在图1的显示单元128中)。例如,显示器接口126可以包括具有图形处理单元的视频卡。

计算机系统100还可以包括输入单元130,其可以由计算机系统100的用户使用以将信息发送到计算机处理器122。输入单元130可以包括轨迹球或其它输入设备,诸如键盘和/或触摸屏监视器。在一个示例中,显示单元128、输入单元130和计算机处理器122可以共同形成用户接口。

生成控制设备101以生成3d彩色图像的一个或多个步骤可以以计算机可读程序指令的形式存储在非瞬态存储设备上。为了执行过程,处理器122将存储在存储设备上的适当指令加载到存储器中,然后执行加载的指令。

图6的计算机系统100可以包括主存储器132,其可以是随机存取存储器(“ram”),并且还可以包括辅助存储器134。辅助存储器134可以包括例如硬盘驱动器136和/或可移动存储装置驱动器138(例如,软盘驱动器、磁带驱动器、光盘驱动器、闪存驱动器等)。可移动存储装置驱动器138可以以众所周知的方式从可移动存储单元140读取和/或向其写入。可移动存储单元140可以是例如软盘、磁带、光盘、闪存设备等,其可以由可移动存储驱动器138写入和读取。可移动存储单元140可以包括存储计算机可执行软件指令和/或数据的非瞬态计算机可读存储介质。

在另外的替代实施例中,辅助存储器134可以包括存储要加载到计算机系统100中的计算机可执行程序或其它指令的其它计算机可读介质。此类设备可以包括可移动存储单元144和接口142(例如,程序盒和盒接口);可移动存储器芯片(例如,可擦除可编程只读存储器(“eprom”)或可编程只读存储器(“prom”))和相关联的存储器插座;以及允许软件和数据从可移动存储单元144传送到计算机系统100的其它部分的其它可移动存储单元144和接口142。

计算机系统100还可以包括通信接口146,其使得软件和数据能够在计算机系统100和外部设备之间传送。这种接口可以包括调制解调器、网络接口(例如,以太网卡或ieee802.11无线lan接口)、通信端口(例如,通用串行总线(“usb”)端口或firewire端口)、个人计算机存储卡国际协会(“pcmcia”)接口、等。经由通信接口146传送的软件和数据可以是信号的形式,其可以是电子、电磁、光学或可以能够由通信接口146发送和/或接收的另一种类型的信号。可以经由通信路径148(例如,信道)将信号提供给通信接口146。通信路径148可以携带信号,并且可以使用电线或电缆、光纤、电话线、蜂窝链路、射频(“rf”)链路等来实现。通信接口146可以用于在计算机系统100与远程服务器或基于云的存储(未示出)之间传送软件或数据或其它信息。

一个或多个计算机程序或计算机控制逻辑可以存储在主存储器132和/或辅助存储器134中。还可以经由通信接口146接收计算机程序。计算机程序可以包括计算机可执行指令,计算机可执行指令在由计算机处理器122执行时使计算机系统100执行所描述的方法。因而,计算机程序可以控制计算机系统100及设备101的其它组件。

在另一个实施例中,软件可以存储在非瞬态计算机可读存储介质中,并使用可移动存储装置驱动器138、硬盘驱动器136和/或通信接口146加载到计算机系统100的主存储器132和/或辅助存储器134中。当由处理器122执行时,控制逻辑(软件)可以使计算机系统100,并且更一般地在一些实施例中是设备101,执行本文描述的方法中的全部或一些。

最后,在另一个示例实施例中,诸如asic、fpga等的硬件组件可以用于执行本文描述的功能。鉴于本说明书,对于(一个或多个)相关领域的技术人员来说,实现这种硬件布置以便执行本文描述的功能将是清晰的。

鉴于前面的描述,可以认识到的是,本文描述的示例实施例提供了用于在相机(例如,牙科相机)中生成3d彩色图像的设备、方法。

除非另外定义,否则本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。虽然与本文描述的那些类似或等同的方法和材料可以用于本公开的实践或测试,但是上文描述了合适的方法和材料。本文提及的所有出版物、专利申请、专利和其它参考文献在适用法律和法规允许的范围内通过引用整体并入本文。在不脱离其精神或基本属性的情况下,本公开可以以其它具体形式实施,并且因此可以期望本实施例在所有方面都被认为是说明性而非限制性的。描述中使用的任何标题都仅仅是为了方便起见而没有法律或限制作用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1