一种水力机械空化发生的实时判定方法与流程

文档序号:20834847发布日期:2020-05-22 16:44阅读:443来源:国知局
一种水力机械空化发生的实时判定方法与流程

本发明属于水力机械运行技术领域,特别是涉及一种水力机械空化发生的实时判定方法。



背景技术:

随着用户对水力机械稳定性要求的逐步提高,保证水力机械特别是巨型水力机械在无空化状态下安全稳定运行已成为考核机组运行状态的一项重要指标。

空化是液体内局部压力降低时,液体内部或液固交界面上蒸气或气体的空穴(空泡)的形成、发展和溃灭的过程,是液体与气体的相变过程,包括空泡的发生、发展和溃灭三个阶段。空泡发生阶段会伴有噪声辐射的大幅度上升;空泡溃灭阶段能够释放出巨大的压能和热能,是造成液体与固体交界面材料破坏的主要过程;在空泡初生与溃灭之间的是空化发展阶段,它主要是干扰空化物体的运动、使作用力发生变化,譬如推力下降、部件振动摆度增大等。

鉴于在目前的技术水平,仅仅当空化现象严重到足以影响水力机械外部特性,即振动摆度增大、噪声增大时,才能够通过外部设备信号信息再依靠技术人员的经验按照概率估计出可能是发生了空化现象。这种方法的准确率不高,而且在空化现象的初始阶段现有的所有检测设备均无法检测。因此,有必要开发一种能够实时准确判定水力机械是否发生空化的方法。



技术实现要素:

本发明目的是为了解决现有技术中的问题,提出了一种水力机械空化发生的实时判定方法。

本发明是通过以下技术方案实现的,本发明提出一种水力机械空化发生的实时判定方法,所述方法包括以下步骤:

步骤1、启动计算机系统,使得水力机械处于非过渡工况稳定运行状态;

步骤2、采集水力机械水声信号;

步骤3、对水力机械水声信号进行小波分析,从而获得基于时间序列ti={t1,t2,...,tm}的水声信号频域能量分布ef:

式中:ti表示第i时刻,i=1,2,...,m;m为自然数;ef为水声信号频域能量分布;fi表示第i时刻水声信号对应不同频率的能量分布,i=1,2,...,mfij表示水声信号第i时刻第j点频率,j=1,2,...,n;n为自然数;vij表示对应第i时刻第j点频率的水声信号频域幅值;

步骤4、对第i时刻水声信号频域幅值系列vij={vi1,vi2,…,vin}进行相对值计算:

式中:vijn表示频域幅值vij的相对值;vimax表示第i时刻水声信号频域幅值系列中的最大值;

步骤5、计算第i时刻频域幅值的相对值系列vijn={vi1n,vi2n,…,vinn}的标准差:

式中:sin表示第i时刻频域幅值的相对值系列vijn={vi1n,vi2n,…,vinn}的标准差;表示第i时刻频域幅值的相对值系列vijn={vi1n,vi2n,…,vinn}的平均值;

步骤6、计算基于时间序列ti={t1,t2,…,tm}的各时刻频域幅值的相对值的标准差sin结果的标准差:

式中:表示基于时间序列ti={t1,t2,…,tm}的各时刻频域幅值的相对值的标准差sin结果的标准差;表示基于时间序列ti={t1,t2,...,tm}的各时刻频域幅值的相对值的标准差sin结果的平均值;

步骤7、利用空化发生指征系数δ判定水力机械空化的发生,所述空化发生指征系数δ按下式计算:

当空化发生指征系数δ大于零,即δ>0时,水力机械发生空化;

当空化发生指征系数δ不大于零,即δ≤0时,水力机械未发生空化。

本发明提出的一种水力机械空化发生的实时判定方法采用小波分析的方法对水力机械水声信号进行小波分析,获得基于时间序列的水声信号频域能量分布情况并据此对水力机械是否发生空化进行判定。在本发明中采用标准差对水力机械水声信号频域内能量分布离散程度和整个时间序列的各时刻频域主要能量的分布范围的离散程度进行评价。所述标准差就是样本平均数方差的开平方,是表征样本数据离散程度的一种数学方法。当样本数据越聚集时,计算出的标准差就越小;当样本数据越离散,则计算出的标准差就越大。鉴于不同安装位置也就是距离空化发生区域不同的情况下水力机械水声信号相应频率对应的频域幅值(能量)是不同的:距离空化发生区域越近,则水力机械水声信号相应频率对应的频域幅值越大;距离空化发生区域越远,则水力机械水声信号相应频率对应的频域幅值越小。为保证能够采用统一的水力机械空化发生门槛值判定水力机械空化发生与否,采用按照水声信号频域幅值相对值,即该时刻水声信号频域幅值的最大值分别除以该时刻水声信号频域幅值系列中的各个频域幅值,用标准差来计算水力机械水声信号频域内能量分布离散程度和整个时间序列的各时刻频域主要能量的分布范围的离散程度进行评价。根据水力机械在发生空化后水声信号在整个频域内能量分布离散水力机械水声信号频域内能量分布离散程度和整个时间序列的各时刻频域主要能量的分布范围的离散程度进行评价均急剧增大的特点,通过计算标准差的方法评价采用小波分析获得的水力机械水声信号在不同时刻下整个频域内的能量分布离散程度和整个时间序列的各时刻频域主要能量的分布范围的离散程度变化的总体趋势,最终依靠比较以此得到的标准差与水力机械空化发生门槛值的大小,即空化发生指征系数δ是否大于零来判定水力机械是否发生空化:当空化发生指征系数δ大于零,即δ>0时,则表明水力机械发生空化;当空化发生指征系数δ不大于零,即δ≤0时,则说明水力机械未发生空化。

附图说明

图1为水力机械发生空化前后水声信号频域的能量分布示意图;

图2为未发生空化时的水声信号时频特性示意图;

图3为发生空化时的水声信号时频特性示意图。

具体实施方式

下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明提出一种水力机械空化发生的实时判定方法,所述方法包括以下步骤:

步骤1、启动计算机系统,使得水力机械处于非过渡工况稳定运行状态;

步骤2、采集水力机械水声信号;

步骤3、对水力机械水声信号进行小波分析,从而获得基于时间序列ti={t1,t2,…,tm}的水声信号频域能量分布ef:

式中:ti表示第i时刻,i=1,2,...,m;m为自然数;ef为水声信号频域能量分布;fi表示第i时刻水声信号对应不同频率的能量分布,i=1,2,...,mfij表示水声信号第i时刻第j点频率,j=1,2,...,n;n为自然数;vij表示对应第i时刻第j点频率的水声信号频域幅值;

步骤4、对第i时刻水声信号频域幅值系列vij={vi1,vi2,...,vin}进行相对值计算:

式中:vijn表示频域幅值vij的相对值;vimax表示第i时刻水声信号频域幅值系列中的最大值;

步骤5、计算第i时刻频域幅值的相对值系列vijn={vi1n,vi2n,...,vinn}的标准差:

式中:sin表示第i时刻频域幅值的相对值系列vijn={vi1n,vi2n,...,vinn}的标准差;表示第i时刻频域幅值的相对值系列vijn={vi1n,vi2n,...,vinn}的平均值;

步骤6、计算基于时间序列ti={t1,t2,...,tm}的各时刻频域幅值的相对值的标准差sin结果的标准差:

式中:表示基于时间序列ti={t1,t2,...,tm}的各时刻频域幅值的相对值的标准差sin结果的标准差;表示基于时间序列ti={t1,t2,...,tm}的各时刻频域幅值的相对值的标准差sin结果的平均值;

步骤7、利用空化发生指征系数δ判定水力机械空化的发生,所述空化发生指征系数δ按下式计算:

当空化发生指征系数δ大于零,即δ>0时,水力机械发生空化;

当空化发生指征系数δ不大于零,即δ≤0时,水力机械未发生空化。

就某一时刻而言,相对于未发生空化的状态,水力机械在发生空化现象后,水声信号的特性发生很大的变化,如图1所示,在整个频域范围内,未发生空化的水力机械水声信号能量分布系列1的能量比较低且分布比较均匀、变化较小,相应的水声信号在整个频域内的能量分布离散度较小;而空化发生后的水力机械水声信号能量分布系列2的能量比较高且分布发生剧烈变化,各频段能量均呈现增大的趋势且频率越低能量增加的绝对值越大,水声信号在整个频域内的能量分布离散度急剧增大。

比较图2和图3所示发生空化前后的水力机械水声信号的时频特性可以发现,未发生空化时,由于水力机械水声信号能量分布系列1的能量比较低且分布比较均匀、变化较小,故而水力机械水声信号在整个时间序列的各时刻频域主要能量的分布范围比较小,且各时刻频域主要能量的分布范围变化也比较小;而一旦发生空化,由于水力机械水声信号能量分布系列2的能量比较高且分布发生剧烈变化,则水力机械水声信号在整个时间序列的各时刻频域主要能量的分布范围大幅度增大,且各时刻频域主要能量的分布范围也随之发生剧烈地变化。

综上所述,通过分析发生空化前后的水力机械水声信号在整个时间序列的各时刻频域主要能量的分布范围的离散程度即可区分出空化现象发生与否,即水力机械水声信号在整个时间序列的各时刻频域主要能量的分布范围的离散程度小,则水力机械未发生空化;反之,空化现象就发生了。

以上对本发明所提出的一种水力机械空化发生的实时判定方法,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1