基于金刚石NV色心磁场测量中的微波噪声消除方法与流程

文档序号:23855174发布日期:2021-02-05 15:07阅读:76来源:国知局
基于金刚石NV色心磁场测量中的微波噪声消除方法与流程
基于金刚石nv色心磁场测量中的微波噪声消除方法
技术领域
[0001]
本公开涉及空间磁场测量技术领域,具体涉及一种基于金刚石nv色心磁场测量中的微波噪声消除方法。


背景技术:

[0002]
近年来,国际上正在研制一种新型的基于金刚石内氮空位电子自旋态光学原理的测量技术的磁强计,并得到快速发展。金刚石在高温高压的形成过程中将氮原子压至于金刚石晶格的空穴中,氮原子数密度可达10
17
cm-3
。利用原子中电子自旋态在外加磁场下的量子效应,即塞曼效应,通过检测不同子能级之间的跃迁能量,基于能级差与磁场强度的线性关系,实现磁场测量。利用金刚石nv色心基态能级之间的相干操纵可在微秒量级这一特点,其响应带宽可达~100khz量级,因此可实现磁场的宽频连续测量,可将空间磁场探测时所需的磁通门磁强计、光泵磁力仪和感应式磁强计三套科学载荷的整体功能,解决现有方案测量方式系统组成复杂,以及在频率测量边界强度存在不一致性的问题,服务于空间科学和地球科学的磁场探测。
[0003]
如何消除部分微波和激光噪音,减少其造成的磁场测量指标降低是提高nv色心指标的最重要的手段之一。微波脉冲序列是nv色心磁场测量的核心步骤,微波信号发生器和微波开关均会导致微波脉冲序列存在功率抖动噪声,导致干涉相位的抖动,最终导致磁场信号的抖动,影响磁力计的测量精度。


技术实现要素:

[0004]
本申请的目的是针对以上问题,提供一种基于金刚石nv色心磁场测量中的微波噪声消除方法。
[0005]
第一方面,本申请提供一种基于金刚石nv色心磁场测量中的微波噪声消除方法,设置测量脉冲序列及参考脉冲序列;所述测量脉冲序列及参考脉冲序列设置的间隔小于等于测量脉冲序列的长度;
[0006]
在所述测量脉冲序列中设置第一态制备激光脉冲、第一态读取激光脉冲以及第一态制备激光脉冲与第一态读取激光脉冲之间的三个第一微波脉冲;
[0007]
在所述参考脉冲序列中设置第二态制备激光脉冲、第二态读取激光脉冲以及第二态制备激光脉冲与第二态读取激光脉冲之间的三个第二微波脉冲;
[0008]
将三个第一微波脉冲的时序分别设置为(π/2)
x-(π)
x-(π/2)
y
;将三个第二微波脉冲的时序分别设置为(π/2)
x-(π)
x-(-π/2)
y

[0009]
根据本申请实施例提供的技术方案,所述第一态制备激光脉冲、第一态读取激光脉冲、第二态制备激光脉冲及第二态读取激光脉冲完全相同。
[0010]
根据本申请实施例提供的技术方案,利用532nm连续激光通过声光调制器发生衍射,利用数字信号发生器信号控制声光调制器驱动,分别产生所述第一态制备激光脉冲、第一态读取激光脉冲、第二态制备激光脉冲及第二态读取激光脉冲。
[0011]
根据本申请实施例提供的技术方案,通过数字信号发生器控制微波开关分别产生所述第一微波脉冲及第二微波脉冲。
[0012]
根据本申请实施例提供的技术方案,产生所述第一态制备激光脉冲及第二态制备激光脉冲的过程包括:利用532nm绿色激光脉冲照射激发金刚石色心,发生基态3a2到激发态3e的跃迁,激发态可以自发辐射回到基态,也可通过中间态1a1和1e发生无辐射跃迁回到基态m
s
=0。
[0013]
根据本申请实施例提供的技术方案,产生所述第一态读取激光脉冲及第二态读取激光脉冲的过程包括:利用532nm绿色激光脉冲照射激发金刚石色心,发生基态3a2到激发态3e的跃迁,激发态可自发辐射回到基态,自发辐射过程会发射荧光,收集荧光可得到相位,经过计算可得到被测磁场大小。
[0014]
根据本申请实施例提供的技术方案,测量脉冲序列中经过(π)
x-(π/2)
y
脉冲后,得到的信号相位为δφ-φ,其中δφ为微波幅度抖动造成的态操作误差,φ为测量磁场造成的相位;测量脉冲序列中经过(π)
x-(-π/2)
y
脉冲后,得到的相位为δφ+φ;
[0015]
设微波幅度抖动造成磁场读数误差为δb,实际磁场为b,测量脉冲序列下的磁场数值为b
sig
=δb+b,参考脉冲序列下的磁场数值为b
ref
=δb-b,修正后的信号b
mod
=(b
sig-b
ref
)/2=b,消除了磁场读数误差δb的影响。
[0016]
根据本申请实施例提供的技术方案,所述φ及b的计算过程包括:
[0017]
测量前利用单个第一微波脉冲,扫描其脉宽从0到π/2,分别记录0和π/2时刻荧光信号v0和v
π/2
作为基准;
[0018]
执行正常的测量过程,得到的荧光信号为v
sig
,测量的磁场造成的相位为磁场为b=φ/(gμ
b
t
seq
),其中t
seq
是(π/2)
x
和(π/2)
y
之间的时间间隔,gμ
b
为常数。
[0019]
本发明的有益效果:本申请提供一种基于金刚石nv色心磁场测量中的微波噪声消除方法,在微波脉冲作用期间,微波幅度的抖动会产生有缺陷的π/2脉冲和π脉冲,进而导致干涉相位的抖动,这一额外噪声将影响磁力计测量精度。为了降低微波噪声的影响,设置参考信号。一般微波噪声为低频噪声,频率分布远小于磁力计重复频率。因此将参考信号设置在测量磁场信号的附近,微波噪声基本可认为是恒定的,在短时间内看只是一个偏置信号,即使此时由于微波噪声导致了具有缺陷的π/2脉冲和π脉冲,可理解为磁场信号上的增加了一个恒定偏置,对于参考信号和磁场信号,两者具有相同的偏置。因此参考信号和测量信号相减即可得到噪声降低的信号。
附图说明
[0020]
图1为本申请第一种实施例的原理示意图。
具体实施方式
[0021]
为了使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本申请进行详细描述,本部分的描述仅是示范性和解释性,不应对本申请的保护范围有任何的限制作用。
[0022]
如图1所示为本申请的第一种实施例的示意图,设置测量脉冲序列及参考脉冲序列;所述测量脉冲序列及参考脉冲序列设置的间隔小于等于测量脉冲序列的长度;
[0023]
在所述测量脉冲序列中设置第一态制备激光脉冲、第一态读取激光脉冲以及第一态制备激光脉冲与第一态读取激光脉冲之间的三个第一微波脉冲;
[0024]
在所述参考脉冲序列中设置第二态制备激光脉冲、第二态读取激光脉冲以及第二态制备激光脉冲与第二态读取激光脉冲之间的三个第二微波脉冲;
[0025]
将三个第一微波脉冲的时序分别设置为(π/2)
x-(π)
x-(π/2)
y
;将三个第二微波脉冲的时序分别设置为(π/2)
x-(π)
x-(-π/2)
y

[0026]
本实施例中,所述第一态制备激光脉冲、第一态读取激光脉冲、第二态制备激光脉冲及第二态读取激光脉冲完全相同。
[0027]
本实施例中,利用532nm连续激光通过声光调制器发生衍射,利用数字信号发生器信号控制声光调制器驱动,分别产生所述第一态制备激光脉冲、第一态读取激光脉冲、第二态制备激光脉冲及第二态读取激光脉冲。
[0028]
产生所述第一态制备激光脉冲及第二态制备激光脉冲的过程包括:利用532nm绿色激光脉冲照射激发金刚石色心,发生基态3a2到激发态3e的跃迁,激发态可以自发辐射回到基态,也可通过中间态1a1和1e发生无辐射跃迁回到基态m
s
=0。
[0029]
产生所述第一态读取激光脉冲及第二态读取激光脉冲的过程包括:利用532nm绿色激光脉冲照射激发金刚石色心,发生基态3a2到激发态3e的跃迁,激发态可自发辐射回到基态,自发辐射过程会发射荧光,收集荧光可得到相位,经过计算可得到被测磁场大小。
[0030]
本实施例中,通过数字信号发生器控制微波开关分别产生所述第一微波脉冲及第二微波脉冲。
[0031]
本实施例中,测量脉冲序列中经过(π)
x-(π/2)
y
脉冲后,得到的信号相位为δφ-φ,其中δφ为微波幅度抖动造成的态操作误差,φ为测量磁场造成的相位;测量脉冲序列中经过(π)
x-(-π/2)
y
脉冲后,得到的相位为δφ+φ;
[0032]
设微波幅度抖动造成磁场读数误差为δb,实际磁场为b,本实施例中由于测量信号和参考信号相隔不超过测量信号自身长度,因此两者由于微波幅度抖动造成的δb可视为相同,测量脉冲序列下的磁场数值为b
sig
=δb+b,参考脉冲序列下的磁场数值为b
ref
=δb-b,修正后的信号b
mod
=(b
sig-b
ref
)/2=b,消除了磁场读数误差δb的影响。
[0033]
本实施例中,所述φ及b的计算过程包括:
[0034]
测量前利用单个第一微波脉冲,扫描其脉宽从0到π/2,分别记录0和π/2时刻荧光信号v0和v
π/2
作为基准;
[0035]
执行正常的测量过程,得到的荧光信号为v
sig
,测量的磁场造成的相位为磁场为b=φ/(gμbt
seq
),其中t
seq
是(π/2)
x
和(π/2)
y
之间的时间间隔,gμ
b
为常数。
[0036]
本实施例中,测量脉冲序列和参考脉冲中序列的激光脉冲完全相同,但微波脉冲不相同,微波脉冲通过数字信号发生器控制微波开关产生,测量脉冲序列中三个微波脉冲时序为(π/2)
x-(π)
x-(π/2)
y
,参考脉冲序列中三个微波脉冲时序为(π/2)
x-(π)
x-(-π/2)
y
。固定微波强度后,通过测量拉比振荡,确定π和π/2脉冲所需的脉冲时长;通过控制微波信号发
生器,可控制微波信号的相位,可分别得到π/2和-π/2脉冲。通过测量脉冲序列和参考脉冲序列,分别得到测量磁场b
sig
和参考磁场b
ref
,修正后的信号b
mod
=(b
sig-b
ref
)/2。
[0037]
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实例的说明只是用于帮助理解本申请的方法及其核心思想。以上所述仅是本申请的优选实施方式,应当指出,由于文字表达的有限性,而客观上存在无限的具体结构,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进、润饰或变化,也可以将上述技术特征以适当的方式进行组合;这些改进润饰、变化或组合,或未经改进将申请的构思和技术方案直接应用于其它场合的,均应视为本申请的保护范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1