一种燃料电池电堆中双极板检漏方法与流程

文档序号:25729204发布日期:2021-07-02 21:16阅读:315来源:国知局
一种燃料电池电堆中双极板检漏方法与流程

本发明涉及燃料电池领域,具体涉及一种燃料电池电堆中双极板检漏方法。



背景技术:

燃料电池是一种将燃料和氧化剂中的化学能直接转化为电能和热能的装置,具有能量转换效率高、环保无污染、噪音小等优点。质子交换膜燃料电池主要由双极板、膜电极、密封结构等组件构成。双极板在燃料电池中的作用主要为:(1)分隔燃料电池电堆内部的反应气和冷却液;(2)协调电堆内部水热管理,引导气体分配和输运;(3)为膜电极提供强度支撑。双极板是燃料电池电堆中数量最多的零部件,是燃料电池电堆的重要组成部分。

双极板是由两片单极板,即阳极单板和阴极单板,经粘结或焊接形成,根据腔体中输运的物质成分可以将双极板腔道分为氧化剂腔、燃料腔、冷却剂腔。双极板的失效主要由双极板泄漏造成,泄漏原因有:(1)极板本身存在泄漏点,即燃料腔与冷却剂腔间泄漏或氧化剂腔与冷却剂腔间泄漏;(2)单极板粘结或焊接过程存在问题导致外漏;(3)双极板与膜电极间密封结构失效,双极板失效都将影响电堆效率和安全性,因此对双极板及单极板的泄漏检测是非常有必要的。



技术实现要素:

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可以对使用过或电堆组装状态的含冷却液的双极板进行检测的燃料电池电堆中双极板检漏方法。

本发明的目的可以通过以下技术方案来实现:

一种燃料电池电堆中双极板检漏方法,该方法为:将燃料供应系统与燃料电池电堆的燃料腔相应管路相连,将氧化剂供应系统与燃料电池电堆的氧化剂腔相应气体管路相连,将冷却液供应系统与燃料电池电堆的冷却液腔相应液体管理相连,将燃料电池电压巡检系统与燃料电池电堆连接,先以水为冷却液,测试各单节单电池的电压;再换以乙二醇基防冻液,并测试各单节单电池的电压,若两次电压数值差值在50mv以上,则说明该节单电池的双极板存在泄漏。

进一步地,该方法的具体步骤为:

(1)准备燃料电池电堆,将燃料供应系统与燃料电池电堆的燃料腔相应管路相连,将氧化剂供应系统与燃料电池电堆的氧化剂腔相应气体管路相连,将冷却液供应系统与燃料电池电堆的冷却液腔相应液体管理相连,将燃料电池电压巡检系统与燃料电池电堆连接;

(2)向燃料电池电堆的燃料腔通入燃料,无背压,向氧化剂腔通入氧化剂,无背压;

(3)向燃料电池电堆的冷却液腔通入去离子水;

(4)采用燃料电池电压巡检系统记录燃料电池电堆各单节电池电压,直至各单节电池开路电压稳定;

(5)待电堆各单节电池开路电压稳定后,提高燃料腔燃料气体压力,氧化剂腔无背压,记录各单节单电池电压情况;

(6)将气体供应系统关闭,停止燃料和氧化剂气体的供应,将冷却液供应系统中的去离子水更换成乙二醇基防冻液,供应至燃料电池电堆的冷却液腔,使电堆冷却液腔充满乙二醇基防冻液,并静置;

(7)向燃料电池电堆的燃料腔供应燃料,无背压,向氧化腔通入氧化剂,无背压;

(8)待电堆各单节电池开路电压再次稳定后,提高燃料腔燃料气体压力,氧化剂腔无背压,记录各单节单电池电压情况;

(9)对比步骤(5)和步骤(8)中的单节单电池电压数值,若两次电压数值差值在50mv以上,则说明该节单电池的双极板存在泄漏。

进一步地,所述的燃料为氢气。

进一步地,所述的氧化剂为空气或氧气。

进一步地,步骤(3)中所述的去离子水在冷却液腔中的压力为0-100kpa(表压)。

进一步地,步骤(5)中所述的燃料气体在燃料腔中的压力为30-80kpa(表压)。

进一步地,步骤(6)中所述的乙二醇基防冻液在冷却液腔中的压力为0-100kpa(表压)。

进一步地,步骤(6)中所述静置的时间为6-48h。

进一步地,步骤(8)中所述的燃料气体在燃料腔中的压力为30-80kpa(表压)。

进一步地,步骤(3)中所述的去离子水在冷却液腔中的压力为0-100kpa(表压);步骤(5)中所述的燃料气体在燃料腔中的压力为30-80kpa(表压);步骤(6)中所述的乙二醇基防冻液在冷却液腔中的压力为0-100kpa(表压);步骤(8)中所述的燃料气体在燃料腔中的压力为30-80kpa(表压)。

本发明的工作原理是,双极板的一个重要作用就是阻隔反应气体和冷却液接触,如果双极板的冷却液腔存在裂纹,将导致冷却液腔中的冷却液,去离子水或乙二醇基防冻液,与膜电极接触。如果冷却液为去离子水,通过双极板裂纹渗透到膜电极附近,则不会对燃料电池的开路电压造成影响;如果冷却液为乙二醇基防冻液时,通过双极板裂纹渗透到膜电极附近,将会对膜电极造成污染,引起催化剂活性下降、质子交换膜质子传输电阻增加等问题,最终造成电池电压下降。通过对比去离子水和乙二醇基防冻液作为冷却液时的电压数据差值,可以定位发生双极板泄漏的单节电池节数,从而达到筛选燃料电池电堆中存在泄漏双极板的目的。质言之,就是通过给冷却液腔的防冻液施加压力,让防冻液通过双极板微孔、裂纹处串漏到mea表面,污染mea活性位点,导致开路电压性能下降;通过性能下降片说明其两侧双极板存在微裂纹或微孔等泄漏点,即可进行燃料电池电堆中双极板检漏及问题双极板的挑选。

与现有技术相比,本发明具有以下优点:

(1)本发明响应灵敏,由于乙二醇基防冻液渗透作用强,双极板上的微裂纹和微气孔即可被发现;

(2)本发明设备简单,无需搭建复杂设备和管路;

(3)本发明可以对电堆组装状态双极板的泄漏情况进行检测,可以对整个燃料电池电堆的双极板泄漏情况进行检测,省时省力;

(4)本发明的检测过程不会对双极板和膜电极造成损伤,即使受到乙二醇的污染也可恢复。

附图说明

图1为本发明结构示意图;

图2为使用去离子水作为冷却液时各节电池开路电压;

图3为使用乙二醇基防冻液作为冷却液时各节电池开路电压;

图中标号所示:1-气体供应系统、2-冷却液供应系统、3-燃料电池电压巡检系统、4-燃料电池电堆。

具体实施方式

下面结合附图和具体实施例对本发明进行详细说明。

一种燃料电池电堆中双极板检漏方法,该方法的具体步骤为:

(1)如图1,准备燃料电池电堆4,将气体供应系统1中的燃料供应系统与燃料电池电堆4的燃料腔相应管路相连,将气体供应系统1中的氧化剂供应系统与燃料电池电堆4的氧化剂腔相应气体管路相连,将冷却液供应系统2与燃料电池电堆4的冷却液腔相应液体管理相连,将燃料电池电压巡检系统3与燃料电池电堆4连接;

(2)向燃料电池电堆4的燃料腔通入氢气,无背压,向氧化剂腔通入空气,无背压;

(3)向燃料电池电堆4的冷却液腔通入去离子水,水压为0-100kpa;

(4)采用燃料电池电压巡检系统3记录燃料电池电堆各单节电池电压,直至各单节电池开路电压稳定;

(5)待电堆各单节电池开路电压稳定后,提高燃料腔燃料气体压力至30-80kpa,氧化剂腔无背压,记录各单节单电池电压情况;

(6)将气体供应系统关闭,停止燃料和氧化剂气体的供应,将冷却液供应系统2中的去离子水更换成乙二醇基防冻液,供应至燃料电池电堆的冷却液腔,使电堆冷却液腔充满乙二醇基防冻液,压力0-100kpa,并静置保持6-48h;

(7)向燃料电池电堆4的燃料腔供应燃料,无背压,向氧化腔通入氧化剂,无背压;

(8)待电堆各单节电池开路电压再次稳定后,提高燃料腔燃料气体压力至30-80kpa,氧化剂腔无背压,记录各单节单电池电压情况;

(9)对比步骤(5)和步骤(8)中的单节单电池电压数值,若两次电压数值差值在50mv以上,则说明该节单电池的双极板存在泄漏。

实施例

先使用去离子水作为冷却液,燃料电池电堆燃料腔压力约为50kpa,氧化剂腔无背压时,燃料电堆电堆各节电池的开路电压如图2,所有单节电池电压均在0.95v以上;

再使用乙二醇基防冻液作为冷却液,液压约为30kpa,静置12h后,控制燃料电池电堆4燃料腔压力为50kpa,氧化剂腔无背压时,燃料电池电堆4各节电池的开路电压如图3,发现第31和68节电池开路电压分别降至0.837v和0.818v;该结果表明第31节和第68节单电池的双极板存在泄漏。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1