一种基于碳量子点的流速探测管道

文档序号:30526795发布日期:2022-06-25 07:46阅读:88来源:国知局
一种基于碳量子点的流速探测管道

1.本发明涉及流速探测领域,具体涉及一种基于碳量子点的流速探测管道。


背景技术:

2.流体在管道内的流速探测为系统运行状态监测、用料控制提供了依据。传统的流速探测方法有转子式流速探测、声学多普勒探测、激光多普勒探测、电磁流速探测、粒子追踪流速探测等。转子式流速探测是通过测定流体经过时产生的运动能量驱动的转子转矩推断流速,转子式流速探测基于特定的机械结构,具有响应速度慢、时效性差的缺点。声学多普勒探测是通过流体运动粒子的反射波引起的多普勒频移测量流体的流速,由于声学多普勒探测需要测量声波的频率,系统复杂,流体中的大颗粒对测量结果也具有较大的影响;激光多普勒探测是通过建立入射光与散射光的频率差与示踪粒子运动速度的关系实现流速测定,由于需要测量激光的频率,即需要使用光谱仪等昂贵设备,成本高;电磁流速探测是利用法拉第电磁感应定律,结合流体力学和电磁学,根据导电流体运动所产生的感应电势以估算流速;粒子追踪流速探测是通过追踪粒子实现流速探测,其粒子具有不可重复利用的缺点。上述流速探测具有各自的优点和缺点,但是均不能给出流速的直观结果,使用起来不方便。
3.碳量子点(carbon quantum dots)是一种新型荧光纳米材料,具有发射波长可调、荧光强度高和化学稳定性好等优点。碳量子点的荧光特性为流速的直观探测提供了可能。


技术实现要素:

4.为解决以上问题,本发明提供了一种基于碳量子点的流速探测管道,包括管道壁,管道壁中镶嵌有透明压电材料部,透明压电材料部的表面接触管道外的自由空间,透明压电材料部的另一表面与管道内部接触,透明压电材料部内掺杂有碳量子点。流体在管道内流通,通过探测透明压电材料部中碳量子点荧光特性的变化实现流速测量。
5.更进一步地,管道壁的材料为不锈钢。
6.更进一步地,透明压电材料部的材料为锆钛酸镧铅透明陶瓷。
7.更进一步地,碳量子点的大于1纳米、小于5纳米。
8.更进一步地,透明压电材料部的厚度小于管道壁的厚度。
9.更进一步地,在管道内,透明压电材料部的内表面凹进管道壁。
10.更进一步地,还包括贵金属颗粒,贵金属颗粒掺杂在透明压电材料部内。
11.更进一步地,贵金属颗粒为球形。
12.更进一步地,贵金属颗粒的直径大于5纳米、小于20纳米。
13.更进一步地,贵金属颗粒的材料为金。
14.本发明的有益效果:本发明提供了一种基于碳量子点的流速探测管道,包括管道壁,管道壁中镶嵌有透明压电材料部,透明压电材料部的表面接触管道外的自由空间,透明压电材料部的另一表面与管道内部接触,透明压电材料部内掺杂有碳量子点。流体在管道
内流动,管道内的流体产生压力,压力改变了透明压电材料部中的应力,进而改变了碳量子点周围的电场,改变了碳量子点的表面电子态,从而改变了碳量子点的荧光发射波长。通过观察或探测碳量子点荧光发射波长的移动实现流速探测。应用时,应用激发光照射透明压电材料部,通过肉眼观测碳量子点荧光颜色变化即可实现流速探测。因此,本发明具有设备简单、探测流体流速方便、直观等优点,在流体流速探测领域具有良好的应用前景。
15.以下将结合附图对本发明做进一步详细说明。
附图说明
16.图1是一种基于碳量子点的流速探测管道的示意图。
17.图2是又一种基于碳量子点的流速探测管道的示意图。
18.图中:1、管道壁;2、透明压电材料部;3、碳量子点;4、贵金属颗粒。
具体实施方式
19.为使本技术的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本技术作进一步详细说明。
20.实施例1
21.本发明提供了一种基于碳量子点的流速探测管道,包括管道壁1,管道壁1的材料为不锈钢。如图1所示,管道壁1中镶嵌有透明压电材料部2。透明压电材料部2的材料为锆钛酸镧铅透明陶瓷。在外界压力作用下,锆钛酸镧铅透明陶瓷内部产生应力,从而建立电场。透明压电材料部2的表面接触管道外的自由空间,透明压电材料部2的另一表面与管道内部接触。也就是说,透明压电材料部2的一侧为管道内、一侧为管道外。透明压电材料部2内掺杂有碳量子点3。碳量子点3的大于1纳米、小于10纳米。碳量子点3可以均匀或者不均匀地掺杂进入透明压电材料部2内,也可以层状分布在透明压电材料部2中。优选地,碳量子点3设置在两层透明压电材料部2之间,也就是夹持在两层透明压电材料部2之间。制作时,将碳量子点3设置在透明压电材料部2上,再在其上设置另外一层透明压电材料部2即可,便于制备。
22.碳量子点3的主要形式包括碳点(carbon dots)和石墨烯量子点(graphene quantum dots)。本发明所述的碳量子点3包括碳点和石墨烯量子点。碳量子点3在紫外光的照射下可以实现下转换光致发光,即碳量子点3被高能量的短波长光激发后,发出两个或者多个低能量的长波长的光子。碳量子点3的下转换荧光具有良好的光稳定性及热稳定性,为本发明流速的准确、直观探测奠定了基础。
23.使用时,应用紫外激光或近紫外激光照射透明压电材料部2,透明压电材料部内2的碳量子点3产生荧光。当管道内的流速不同时,管道内的压力也产生差异。例如,流速较大时,压力也加大。这种压力压迫透明压电材料部2,一方面,在透明压电材料部2内建立电场,改变了碳量子点3的局域环境,改变了碳量子点3的表面电子态,从而改变了碳量子点3的荧光发射波长;另一方面,压力也改变了碳量子点3的微观形貌,也改变了碳量子点3的表面电子态。这些都导致碳量子点3的荧光发射波长移动。通过肉眼或者光谱仪探测碳量子点3荧光发射波长的移动实现流速探测。在本发明中,通过肉眼观测碳量子点3荧光颜色变化即可实现流速探测。因此,本发明具有设备简单、探测流体流速方便、直观等优点,在流体流速探
测领域具有良好的应用前景。
24.实施例2
25.在实施例1的基础上,透明压电材料部2的厚度小于管道壁1的厚度。这样一来,管道内的流体能够使透明压电材料部2产生更多的形变,从而使得透明压电材料部2内建立更强的电场,更多地改变碳量子点3周围的局域环境、表面电子态和微观形貌,从而更多地移动碳量子点3发射荧光的波长,更利于流速探测,也就是实现更高灵敏度的流速探测。
26.更进一步地,在管道内,透明压电材料部2的内表面凹进管道壁1。也就是说,在管道内,透明压电材料部2凹进管道壁1一些,形成凹陷。在凹陷处,流体的流速低,根据伯努利原理,该处的流速低、压强高,从而使得透明压电材料部2经受更大的压力,更大地改变碳量子点3发射荧光的波长,从而实现更高灵敏度的流速探测。
27.实施例3
28.在实施例2的基础上,如图2所示,还包括贵金属颗粒4,贵金属颗粒4掺杂在透明压电材料部2内。贵金属颗粒4为球形。贵金属颗粒4的直径大于5纳米、小于20纳米。贵金属颗粒4的材料为金。贵金属颗粒4分布在碳量子点3附近,贵金属颗粒4具有局域表面等离激元共振特性,增强光吸收,并且在贵金属颗粒4附近产生强电磁场,从而使得碳量子点3产生更强的荧光,便于观测。将贵金属颗粒4的尺寸限定在5纳米-20纳米之间,更进一步地,将贵金属颗粒4的尺寸限制在5纳米-10纳米之间,贵金属颗粒4对入射的紫外光或近紫外光具有良好的局域表面等离激元共振特性,可是对发射的可见光波段的荧光具有较少的吸收,更有利于促进碳量子点3的荧光发射,也就是提高碳量子点荧光发射的强度,更易于探测。
29.实施例4
30.在实施例3的基础上,透明压电材料部2为条形,条形的方向沿管道方向。沿管道方向,透明压电材料部2的厚度逐渐增加或减少。也就是说,沿管道方向,透明压电材料部2的厚度逐渐变化。这样一来,沿条形方向,透明压电材料部2的不同部位内部所产生的应力不同,对碳量子点3表面电子态等的改变不同,从而沿条形方向显示出不同的颜色,通过颜色分布可以实现流速探测。相比于,在一个位置处观测颜色变化,在一个区域内观测颜色变化更容易。因此,本实施例具有观测容易、更直观的优点。
31.实施例5
32.在实施例4的基础上,沿条形方向,碳量子点3的尺寸不同:在透明压电材料部2薄的一端,碳量子点3的尺寸大;在透明导电材料部2厚的一端,碳量子点3的尺寸小。在压力作用下,透明压电材料部2内产生电场,相当于引入了极性环境,极性环境的引入导致碳量子点3的发光波长红移。另一方面,随着碳量子点3尺寸的增加,发光波长也红移。这样一来,上述设置不同尺寸碳量子点3的方式,能够在条形透明压电材料部2上显示更大的颜色差异,从而便于肉眼或探测器观测相同颜色的移动,从而实现更高灵敏度的流速探测。
33.以上所述仅为本技术的较佳实施例而已,并不用以限制本技术,凡在本技术的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本技术保护的范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1