信息采集装置以及电池模组的制作方法

文档序号:30982466发布日期:2022-08-03 00:55阅读:121来源:国知局
信息采集装置以及电池模组的制作方法

1.本发明涉及电池技术领域,特别涉及一种信息采集装置以及具有该信息采集装置的电池模组。


背景技术:

2.相关技术中,信息采集装置用于采集采样载体的温度,当采样载体排布有多个时,信息采集装置需要同时采集多个采样载体的温度,设计人员需要根据采样载体的排布方式为每种采样载体设计不同样式的信息采集装置,不仅造成信息采集装置的通用性较低,还会造成信息采集装置的设计成本过大,从而会增加在采样载体上设置信息采集装置所需的成本。


技术实现要素:

3.有鉴于此,本发明旨在提出一种信息采集装置,该信息采集装置能够同时采集多个采样载体的温度,且该信息采集装置具有更高的通用性,且可以降低信息采集装置的设计成本,从而可以减少在采样载体上设置信息采集装置的成本。
4.为达到上述目的,本发明的技术方案是这样实现的:
5.一种信息采集装置包括:线路板;采集芯片,所述采集芯片与所述线路板电连接,所述采集芯片适于与采样载体接触且用于采集所述采样载体的温度。
6.在本发明的一些示例中,所述采集芯片具有温度采集区,所述温度采集区适于与所述采样载体接触。
7.在本发明的一些示例中,所述线路板设有安装孔,所述采集芯片安装于所述安装孔。
8.在本发明的一些示例中,所述采集芯片用于与所述采样载体接触的一侧设有导热层。
9.在本发明的一些示例中,所述导热层构造为导热胶层。
10.在本发明的一些示例中,所述的信息采集装置还包括:电压采集部,所述电压采集部与所述线路板电连接,所述电压采集部用于与所述采样载体电连接以采集所述采样载体电压。
11.在本发明的一些示例中,所述电压采集部构造为金属片。
12.在本发明的一些示例中,所述线路板用于与所述采样载体接触的一侧设有粘接部。
13.在本发明的一些示例中,所述的信息采集装置还包括通信输入端和通信输出端,所述通信输入端和所述通信输出端均与所述线路板电连接。
14.相对于现有技术,本发明所述的信息采集装置具有以下优势:
15.根据本发明的信息采集装置,当采样载体为多个时,通过在多个采样载体上分别设置信息采集装置,并且将多个信息采集装置依次串联连接,与现有技术相比,信息采集装
置可以实现对采样载体的温度精准测量,并且,多个信息采集装置可以同时采集多个采样载体的温度,从而可以增大信息采集装置的检测范围,同时,通过增加或者减少信息采集装置的数量,可以使信息采集装置的数量与采样载体的数量适配,信息采集装置可以与不同型号的采样载体配合使用,从而可以提高信息采集装置的通用性,进而降低信息采集装置的生产成本和设计成本。
16.本发明的另一目的在于提出一种电池模组。
17.为达到上述目的,本发明的技术方案是这样实现的:
18.一种电池模组包括:多个电芯;信息采集装置,所述信息采集装置为上述的信息采集装置,所述信息采集装置与所述电芯配合装配。
19.所述电池模组与上述的信息采集装置相对于现有技术所具有的优势相同,在此不再赘述。
附图说明
20.构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
21.图1为本发明实施例所述的信息采集装置的示意图;
22.图2为本发明实施例所述的通信输入端的示意图;
23.图3为本发明实施例所述的通信输出端的示意图;
24.图4为本发明实施例所述的多个信息采集装置通过电连接线依次串联连接的示意图;
25.图5为本发明实施例所述的采样电路的第一种实施例的示意图;
26.图6为本发明实施例所述的多个第一种实施例的采样电路串联连接的示意图;
27.图7为本发明实施例所述的多个第二种实施例的采样电路串联连接的示意图;
28.图8为本发明实施例所述的两个信息采集装置通过电连接线进行连接的示意图;
29.图9为本发明实施例所述的电池模组的示意图。
30.附图标记说明:
31.电池模组1000;
32.信息采集装置100;电芯200;电连接线300;降噪部件400;
33.线路板10;安装孔101;
34.采集芯片20;电压采集部30;通信输入端40;通信输出端50。
具体实施方式
35.需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
36.下面将参考附图并结合实施例来详细说明本发明。
37.如图1-图9所示,根据本发明实施例所述的信息采集装置100包括:线路板10和采集芯片20。其中,线路板10的表面可以蚀刻电路,在一些具体的实施例中,线路板10可以为印刷线路板10,但是本发明不限于此,例如,线路板10也可以为柔性线路板。优选地,线路板10可以设置为柔性线路板,柔性线路板的可塑性更高,可以便于信息采集装置100安装于电
池模组1000内。
38.并且,采集芯片20与线路板10电连接,具体而言,采集芯片20具有多个引脚,线路板10可以对应设置有多个焊接点,多个焊接点均与线路板10表面的电路连接。采集芯片20 的多个引脚可以分别与对应的焊接点焊接连接,从而可以使线路板10与采集芯片20连接在一起,且采集芯片20可以通过焊接点与线路板10表面的电路导通,进而可以实现采集芯片 20与线路板10电连接的技术效果。
39.同时,采集芯片20适于与采样载体接触且用于采集采样载体的温度。采集芯片20内可以集成有温度传感器,通过将采集芯片20与采样载体接触,温度传感器可以将采样载体的温度转变为电信号,采集芯片20可以根据温度传感器发送的电信号获取采样载体的温度。需要说明的是,在一些实施例中,采集芯片20可以与采样载体的表面直接接触以采集采样载体的温度,例如采集芯片20可以贴合于采样载体的表面。而在另外一些实施例中,采集芯片20可以与采样载体的表面间接接触以采集采样载体的温度,例如采集芯片20与采样载体的表面之间可以设置有导热介质,导热介质可以在采集芯片20与采样载体之间传递热量,采集芯片20可以根据导热介质的温度获取采样载体的温度。
40.进一步地,线路板10上还可以设置有多个元件连接位,多个元件连接位均与线路板10 表面的电路连接。元件连接位可以安装电子元件,电子元件可以包括但不限于:电阻、电容等,通过采集芯片20、线路板10和电子元件配合,可以使线路板10的表面形成采样电路,例如线路板10、电子元件和采集芯片20配合可以形成图5所示的采样电路,通过在信息采集装置100上设置采样电路,信息采集装置100可以根据采样需求采集采样载体的温度。
41.进一步地,当采样载体为多个时,信息采集装置100可以对应设置有多个,多个信息采集装置100分别用于检测对应的采样载体的温度,从而实现了信息采集装置100的模块化设计,设计人员可以根据采样载体的数量设置对应数量的信息采集装置100,设计人员在设置信息采集装置100以采集采样载体的温度时,设计人员不需要根据采样载体的数量和排布方式为不同型号的采样载体另外设计信息采集装置100。
42.并且,多个信息采集装置100之间可以通讯连接,优选地,多个信息采集装置100之间可以依次串联连接,图7为本发明的一些具体的实施例中两个信息采集装置100串联连接后的采样电路。进一步地,多个信息采集装置100串联后可以与分析装置电连接,分析装置可以同时对多个信息采集装置100采集的温度数据进行分析,从而可以判断采样载体的温度是否异常。
43.由此,当采样载体为多个时,通过在多个采样载体上分别设置信息采集装置100,并且将多个信息采集装置100通信依次串联连接,与现有技术相比,在同时采集多个采样载体的温度的基础上,信息采集装置100具有更高的通用性,也可以使信息采集装置100的设计成本降低,从而可以减少在采样载体上设置信息采集装置100的成本。
44.在本发明的一些实施例中,采集芯片20具有温度采集区,温度采集区适于与采样载体接触。其中,温度采集区可以设置于采集芯片20朝向采样载体的一侧,温度传感器可以集成于温度采集区,通过将温度采集区与采样载体接触,采样载体产生的热量可以传递至温度采集区。采样载体的热量传递至温度采集区后,温度传感器可以产生温度信号,采集芯片20 接收到温度传感器的温度信号后可以采集采样载体的温度。
45.需要说明的是,在本发明的一些实施方案中,在不考虑信息采集装置100的生产成
本的情况下,温度传感器可以单独设置于线路板10上,采集芯片20安装于线路板10上时,温度传感器与采集芯片20之间可以通信连接,此时温度采集区可以位于线路板10上,通过将线路板10与采样载体接触,采集芯片20可以通过设置于线路板10上的温度传感器采集采样载体的温度。
46.在本发明的一些实施例中,如图1所示,线路板10可以设置有安装孔101,采集芯片 20可以安装于安装孔101。其中,安装孔101可以在线路板10的厚度方向贯穿线路板10,当采集芯片20安装于线路板10上时,温度采集区可以与安装孔101相对设置。当采集芯片 20适于与采样载体直接接触时,温度采集区可以穿过安装孔101后与采样载体接触,从而可以使采集芯片20采集采样载体的温度。
47.当采集芯片20适于与采样载体间接接触时,安装孔101内可以填充导热介质,导热介质可以为空气或者导热能力较强的物质,导热介质还可以为热管等导热结构。导热介质填充于安装孔101内时,导热介质可以与采样载体接触,且导热介质可以与温度采集区接触,采样载体表面的热量可以通过导热介质传导至温度采集区,从而可以使采集芯片20采集采样载体的温度。由此,安装孔101可以避让温度采集区或导热介质,从而可以保证采集芯片20 与采样载体能够接触,进而可以提高信息采集装置100采集数据的准确性。
48.在本发明的一些实施例中,采集芯片20用于与采样载体接触的一侧可以设置有导热层。也就是说,采集芯片20与采样载体之间可以间接接触,且采集芯片20与采样载体之间的导热介质可以为导热层。导热层可以填充于安装孔101内,也可以理解为,安装孔101可以用于避让导热层,从而可以保证导热层与采集芯片20、导热层与采样载体均能接触,进而可以使导热层将采样载体的热量传导至温度采集区以使采集芯片20采集采样载体的温度。
49.进一步地,导热层可以构造为导热胶层,即导热层可以采用导热胶材料,导热胶具有良好的导热能力,且导热胶具有一定的流动性,导热胶可以均匀地填充于采集芯片20与采样载体之间,且导热胶与采集芯片20之间、导热胶与采样载体之间均紧密地贴合,导热胶与采集芯片20之间、导热胶与采样载体之间的接触面积更大,采样载体产生的热量易于通过导热胶传导至采集芯片20,从而可以使采集芯片20能够快速、精准地获取采样载体的温度。
50.在本发明的一些实施例中,如图1、图4、图8所示,信息采集装置100还可以包括:电压采集部30,电压采集部30可以用于与采样载体电连接以采集采样载体电压。其中,当采样载体为用电设备或者储电设备时,通过在信息采集装置100上设置电压采集部30,可以使信息采集装置100采集采样载体的电压,从而可以增加信息采集装置100的功能性。需要说明的是,电压采集部30可以与用电设备的电流输入端或者电流输出端连接,或者电压采集部30可以与储电设备的电流输入端或者电流输出端连接。
51.并且,电压采集部30可以与线路板10电连接,具体而言,电压采集部30可以与线路板10上的电路电连接,进而可以使电压采集部30与安装于线路板10上的采集芯片20电连接,通过采集芯片20、线路板10和电子元件配合,电压采集部30采集采样载体的电压后,采集芯片20可以生成采样载体的电压信号,并且采样电路可以将采集的电压信号发送至分析装置,分析装置可以根据电压信号分析采样载体的电压是否异常。
52.另外,当采集芯片20、线路板10和电子元件配合形成如图5所示的电路时,信息采集装置100还可以用于计算采样载体的内阻,且信息采集装置100可以生成采样载体的内阻
信号,分析装置接收到采样载体的内阻信号后可以根据采样载体的内阻判断采样载体的老化情况。
53.进一步地,当采集芯片20、线路板10和电子元件配合形成如图5所示的电路时,信息信息采集装置100还可以用于均衡采样载体的电压,从而可以保证采样载体的电压保持在适宜的工作电压范围内,进而可以有效地延长采样载体的使用寿命。
54.在本发明的一些实施例中,电压采集部30可以构造为金属片,其中,金属具有良好的导电性能,且金属片的电阻较低,使用金属片采集采样载体的电压可以提高信息采集装置100的采样精度。具体而言,电压采集部30可以构造为铝片、镍片或者铜片等,电压采集部30可以与线路板10焊接连接,且电压采集部30可以与采样载体的电流输入端或电流输出端焊接连接,从而可以保证电压采集部30可靠地连接于线路板10与采样载体之间。当然在本发明的另外一些实施例中,电压采集部30与线路板10之间、电压采集部30与采样载体之间也可以通过紧固件进行连接,紧固件可以为螺栓等,如此设置同样可以保证电压采集部30可靠地连接于线路板10与采样载体之间。
55.在本发明的一些实施例中,线路板10用于与采样载体接触的一侧可以设置有粘接部,也就是说,线路板10远离采集芯片20的一侧可以设置有粘接部,其中,粘接部的表面平整,且粘接部与采样载体的表面形状适配,粘接部可以与采样载体的表面粘接配合,在一些实施例中,粘接部可以为双面胶布,双面胶的其中一面可以与线路板10粘接配合,双面胶的另外一面可以与采样载体粘接配合,从而可以使信息采集装置100可靠地安装于采样载体上。
56.但是本发明不限于此,例如在另外一些实施例中,粘接部可以被替换为胶水,通过在线路板10的用于与采样载体接触的一侧涂敷胶水,并且将线路板10与采样载体压抵配合,可以实现信息采集装置100可靠地安装于采样载体上的技术效果。当然在另外一些实施例中,粘接部还可以被替换为焊接部,线路板10可以通过焊接的连接方式安装于采样载体上。
57.在本发明的一些实施例中,如图1-图3、图8所示,信息采集装置100还可以包括通信输入端40和通信输出端50,通信输入端40和通信输出端50均与线路板10电连接。其中,通信输入端40和通信输出端50均可以包括多个电连接位,每个电连接位均与线路板10中的其中一条电路电连通。且通信输入端40的电连接位数量与通信输出端50的电连接位数量相同,例如在图8所示的实施例中,通信输入端40的电连接位数量与通信输出端50的电连接位数量均设置为五个。
58.进一步地,电连接线300可以连接于第n个信息采集装置100的通信输出端50与第n+1 个信息采集装置100的通信输入端40之间,需要说明的是,n为大于0的整数。通过使用多个电连接线300将多个信息采集装置100依次连接,可以实现多个信息采集装置100依次串联连接的技术效果,电连接线300可以使多个信息采集装置100的采样电路串联连接,从而可以使多个信息采集装置100的采样电路将采样的电压信号、温度信号、内阻信号等通过串联电路传输至分析装置。
59.进一步地,在一些实施例中,通信输入端40和电连接线300之间可以通过插接端口和插接端子连接在一起,且通信输出端50和电连接线300之间可以通过插接端口和插接端子连接在一起,即通信输入端40和电连接线300之间、通信输出端50和电连接线300之间插
接配合,在另外一些实施例中,如图8所示,通信输入端40和电连接线300之间可以设置有焊接部,且通信输出端50和电连接线300之间可以设置有焊接部,通信输入端40和电连接线300之间、通信输出端50和电连接线300之间可以焊接连接。如此设置均可以使通信输入端40和电连接线300之间、通信输出端50和电连接线300之间可靠地连接。
60.进一步地,当多个电芯200串联连接时,任意两个相邻的电芯200之间的排布方向相反,当信息采集装置100在每个电芯200上的设置位置相同、且任意两个相邻的信息采集装置100之间交错设置时,通过使设置于电池模组1000一侧的信息采集装置100均采用a型结构,设置于电池模组1000另外一侧的信息采集装置100均采用b型结构,a型结构与b型结构之间互为镜像结构,当电连接线300连接在两个信息采集装置100之间时,如此设置可以避免多个电连接线300之间产生交叉,从而可以降低电连接线300之间的信号干扰,进而可以提高信息采集装置100的采样质量。
61.根据本发明的一些具体的实施例中,设线路板10的长度尺寸为l,满足关系式:10mm≤l≤30mm,设线路板10的宽度尺寸为w,满足关系式:10mm≤w≤30mm,例如如图8所示的信息采集装置100,该信息采集装置100的长度尺寸为19.6mm,且信息采集装置100的宽度尺寸为17.94mm。通过将线路板10的长度尺寸设置为10mm~30mm、且线路板10的宽度尺寸设置为10mm~30mm,在保证线路板10中蚀刻的电路互不干扰的同时,可以有效地减小线路板10的径向尺寸,从而可以减小信息采集装置100在采样载体上的占用空间,进而可以使信息采集装置100更容易设置于采样载体。
62.根据本发明的一些具体的实施例中,首个信息采集装置100和分析装置之间和/或末尾信息采集装置100和分析装置之间可以设置有变压器等降噪部件400,降噪部件400可以降低信息采集装置100和分析装置之间的噪声信号,从而可以避免分析装置接收的数据与实际数据偏差较大造成分析装置分析的数据异常。
63.根据本发明实施例所述的电池模组1000包括:多个电芯200和信息采集装置100,多个电芯200可以依次排布,电芯200之间可以通过汇流排电连接。信息采集装置100可以为上述实施例的信息采集装置100,也就是说,电芯200可以作为采样载体,信息采集装置100可以采集电芯200的温度和电压,电池模组1000还可以包括bms(batterymanagementsystem-电池管理系统),上述实施例的分析装置可以为电池模组1000的bms,信息采集装置100采集的电芯200的温度数据和电压数据传输至bms后,bms可以对电芯200的温度数据和电压数据进行分析,从而可以判断电芯200的温度和电压是否异常,进而可以减小电池模组1000过热损坏、过压损坏的概率。
64.另外,当采集芯片20、线路板10和电子元件配合形成如图5所示的采样电路时,bms还可以通过采样电路计算电芯200的内阻,进一步地,当bms分析电芯200的电压异常时,bms还可以通过与异常电芯200对应的信息采集装置100的采样电路均衡电芯200的电压,从而可以使电芯200的电压保持在适宜的工作电压区间内。
65.并且,信息采集装置100与电芯200配合装配,具体而言,信息采集装置100的线路板10可以设置有粘接部,粘接部可以设置于线路板10的用于与采样载体接触的一侧,当电芯200的壳体温度与电芯200的温度保持相同或者相近时,粘接部可以与电芯200的壳体粘接配合,也就是说,信息采集装置100可以粘接于电芯200的壳体上,信息采集装置100可以通过采集电芯200的壳体温度以获取电芯200的温度。在另外一些具体的实施方案中,当电
芯200的汇流排温度与电芯200的温度保持相同或者相近时,粘接部可以与电芯200的汇流排粘接配合,信息采集装置100可以通过采集电芯200的汇流排温度以获取电芯200的温度。
66.进一步地,当电芯200的壳体包括绝缘外壳体和金属内壳体组成时,绝缘外壳体可以设置有避让孔,信息采集装置100可以安装于安装孔101内,信息采集装置100可以与金属内壳体接触,从而可以使信息采集装置100更精准地采集到电芯200的温度。
67.进一步地,当电芯200为多个时,信息采集装置100可以对应设置有多个,多个信息采集装置100分别用于检测对应的电芯200的温度,从而实现了信息采集装置100的模块化设计,设计人员可以根据电芯200的数量设置对应数量的信息采集装置100,设计人员在设置信息采集装置100以采集电芯200的温度时,设计人员不需要根据电芯200的数量和排布方式另外设计信息采集装置100。
68.并且,多个信息采集装置100之间可以通讯连接,优选地,多个信息采集装置100之间可以依次串联连接,图7为本发明的一些实施例中两个信息采集装置100串联连接后的采样电路。进一步地,多个信息采集装置100串联后可以与bms电连接,bms可以同时对多个信息采集装置100采集的温度数据进行分析,从而可以判断电池模组1000的温度、电池模组1000中每个电芯200的温度是否异常。
69.进一步地,当蚀刻在线路板10上的电路材料为铜材料、且电芯200之间的汇流排材料为铝材料时,电压采集部30可以构造为镍片,也就是说,电压采集部30可以采用镍材料制作,其中,镍材料的化学性质介于铝材料和铜材料之间,且镍片的导电性能较好,通过将镍片设置于汇流排与线路板10之间,在保证电压采集部30能够精准地采集到电芯200电压的情况下,镍片与铜电路之间、镍片与铝汇流排之间均不容易发生电化学腐蚀,从而可以有效地延长电压采集部30的使用寿命。
70.根据本发明实施例的采样电路,采样电路包括多个子采样电路,采样电路设置有采集芯片20,通过采集芯片20与多个子采样电路配合,可以使采样电路具有多种功能。具体而言,采集芯片20可以包括多个引脚,在图5所示的实施例中,采集芯片20可以包括20 个引脚,采集芯片20的20个引脚可以分别与采集芯片20内部的电路电连接。在采集芯片 20的宽度方向,采集芯片20两侧可以分别设置有10个引脚,10个引脚可以沿采集芯片20 的长度方向依次间隔开设置,下面以图5为例对本发明进行说明。
71.其中,在采样电路中,第一引脚、第二十引脚、第十一引脚、第十二引脚均可以构造为 vss引脚,第一引脚可以与第二十引脚通过子采样电路连接,且连接有第一引脚和第二十引脚的子采样电路可以接地设置,第十一引脚可以与第十二引脚通过子采样电路连接,且连接有第一引脚和第二十引脚的子采样电路可以接地设置,设计人员可以通过连接有第一引脚和第二十引脚的子采样电路、连接有第一引脚和第二十引脚的子采样电路对采集芯片进行调试,从而可以使采集芯片根据预设的指令采集电芯的电压和/或温度。
72.进一步地,在采样电路中,第二引脚可以构造为vdr引脚,第三引脚可以构造为vsw 引脚,第二引脚可以与第三引脚通过子采样电路连接,电芯200、第二引脚和第三引脚之间可以设置有mos管,mos管的g极与第三引脚连接,mos管的s极接地,且mos管的 d极与第三引脚连接,mos管的d极还与电阻连接,电阻的另一端与第十六引脚、第十七引脚连接,通过第二引脚、第三引脚和mos管配合,采样电路可以以不同的增益效果测量电芯200的内阻。
73.进一步地,在采样电路中,第四引脚可以构造为vclg引脚,第五引脚可以构造为
vclm 引脚,第十六引脚可以构造为vchm引脚,第十七引脚可以构造为vchg引脚,第四引脚和第五引脚可以接地,且第十六引脚和第十七引脚还可以与电芯200的正极柱连接,通过第五引脚和第十六引脚配合,采样电路可以检测电芯200的电压,并且,通过第四引脚和第十七引脚配合,与第四引脚和第十七引脚连接的子采样电路可以辅助检测电芯200的电压,从而可以使采集芯片20对采集的电芯200的电压进行校验,进而可以进一步地提高信息采集装置100的采样精度。
74.进一步地,如图5所示,第六引脚可以构造为vss引脚,第十五引脚可以构造为vbat 引脚,第六引脚可以与电芯200的负极柱连接,且第十五引脚可以与电芯200的正极柱连接,通过第六引脚和第十五引脚配合,连接有第六引脚和第十五引脚的子采样电路可以为采集芯片20供电,可以保证采集芯片20正常工作。
75.进一步地,第七引脚可以构造为diobotp/mosi引脚,第八引脚可以构造为diobotn/sck引脚,第十四引脚可以构造为diotopp引脚,第十三引脚可以构造为 diotopn引脚,如图5所示,第七引脚可以与上游的信息采集装置100中采集芯片20的第十四引脚连接,第八引脚可以与上游的信息采集装置100中采集芯片20的第十三引脚连接。
76.对应地,第十四引脚可以与下游的信息采集装置100中采集芯片20的第七引脚连接,第十三引脚可以与下游的信息采集装置100中采集芯片20的第八引脚连接,通过第七引脚、第八引脚、第十三引脚、第十四引脚分别与相邻的信息采集装置100中采集芯片20对应的引脚配合,任意相邻的两个信息采集装置100之间可以通过连接有第七引脚和第十四引脚的子采样电路、连接有第八引脚和第十三引脚的子采样电路进行信号传输,从而可以使多个信息采集装置100沿着多个信息采集装置100的串联路径将采集的温度数据和/或电压数据逐级传输至分析装置。
77.进一步地,如图5所示,第九引脚可以构造为spi_en引脚,第九引脚可以与第七引脚连接,且第九引脚可以与第八引脚连接,并且,第九引脚与第七引脚之间、第九引脚与第八引脚之间均可以设置有二极管,二极管可以保护对应的子采样电路,从而可以防止对应的子采样电路在大功率工况下过载损坏。同时,当信息采集装置100与分析装置连接时,第九引脚可以接高电平,可以调节spi的工作模式。当信息采集装置100设置于两个信息采集装置 100之间时,第九引脚可以接地设置。
78.进一步地,如图5所示,第十引脚可以构造为miso引脚,第十引脚可以悬空设置。即第十引脚不与采样电路连接。进一步地,第十八引脚可以构造为vhp引脚,第十八引脚可以与电芯200的正极柱连接,且第十八引脚与电芯200的正极柱之间可以连接有电容,当采集芯片20在高增益模式下检测电芯200的内阻时,第十八引脚可以对内阻信号进行滤波,从而可以提高采集芯片20对电芯内阻的采样精度。
79.进一步地,第十三引脚、第十四引脚还可以连接二极管后接地,二极管可以用于保护对应的子采样电路,从而可以防止对应的子采样电路在大功率工况下过载损坏。进一步地,第十九引脚可以构造为vbat_fil引脚,第十九引脚可以连接电容后接地,连接有第十九引脚的子采样电路可以用于对采集芯片20的供电进行滤波,从而可以提高采集芯片20的工作稳定性。
80.以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1