一种基于可见光反射光谱特性的超精密车削加工表面三维微观形貌的测量方法

文档序号:8920471阅读:517来源:国知局
一种基于可见光反射光谱特性的超精密车削加工表面三维微观形貌的测量方法
【技术领域】
[0001]本发明属于非接触光学精密测量技术领域,涉及一种通过测量已加工表面的可见光反射光谱特性进而实现对表面微观形貌测量的方法。
【背景技术】
[0002]近年来,随着航空航天、激光惯性约束核聚变、微光学系统等高科技领域的快速发展,对零部件的表面质量提出了越来越高的要求,它关系到零部件的使用性能和可靠性,因此,表面微观形貌的测量对于评价表面质量具有重要意义。
[0003]超精密车削加工技术是利用天然金刚石刀具在超精密机床上对零件进行加工。超精密车削技术可加工的材料种类很多,包括各种有色金属,如单晶锗、铝合金、黄铜、无氧铜、非电解镍等,还可以加工某些非金属材料,如光学塑料、KDP晶体等,并具有加工效率高、可进行确定性加工、加工表面质量好(表面粗糙度Ra达到纳米级)等优点,因此成为当前国际先进制造领域的研宄热点。
[0004]超精密加工表面微观形貌的测量方法主要包括接触式测量和非接触式测量方法。接触式测量方法又可分为二维和三维触针式测量,常用的测量仪器有表面粗糙度轮廓仪和原子力扫描显微镜。非接触式测量方法主要采用光学法(包括光的散射和干涉原理)和计算机视觉技术。目前这些测量方法均有一定的局限性,例如,接触式测量方法测量速度慢,有可能损伤测量表面,表面粗糙度轮廓仪只能对工件表面进行二维形貌的测量,原子力扫描显微镜可以测量工件的三维形貌,但测量区域受到限制,一般小于100 μπι。非接触式测量方法测量范围比较小,如白光干涉仪,测量区域只有200 μ m,对整个待测表面而言具有某种不可靠性;此外,其对测试环境要求高,且在加工现场使用时精度无法保证。

【发明内容】

[0005]本发明的目的是提供一种基于可见光反射光谱特性的超精密车削加工表面三维微观形貌的测量方法,通过测量超精密车削加工表面的可见光反射光谱,实现对工件表面三维微观形貌特征的测量,进而为表面微观形貌的测量与评价提供一种高精度、高效率、可靠稳定的测量手段。
[0006]本发明的目的是通过以下技术方案实现的:
[0007]一种基于可见光反射光谱特性的超精密车削加工表面三维微观形貌的测量方法,包括如下步骤:
[0008]—、可见光光源输出连续而强度均匀的入射光;
[0009]二、准直透镜对可见光光源输出的光谱进行调制,使其成为准直光;
[0010]三、准直光经过线性衰减片,光强会有一定的减弱,再经过小孔光阑后,只有中心光斑通过,照射到装卡在回转工作台上的被测工件表面,光斑的大小由小孔光阑的直径决定;
[0011]四、光斑在被测工件表面会发生衍射现象,被色散开的单色波会按照不同波长和级次依次排开,形成光谱;
[0012]五、光谱通过透镜后,反射光谱被调制为准直光,通过安装在直线位移台上的光纤测头,在不同扫描位置对各个波长的±1级光谱进行测量,测量结果输入到光谱仪中;
[0013]六、利用光栅方程对测量结果进行计算分析,得到被测工件表面三维微观形貌信息。
[0014]上述方法中,通过线性衰减片和小孔光阑对准直光的光强和光斑大小进行调整,根据测量环境、不同类型工件以及光谱仪的光强测量范围,线性衰减片把准直光的强度调整在其强度20-80%的范围内,小孔光阑的直径范围为200-1000 μ m,其中以500 μ m直径的小孔光阑为宜。
[0015]上述方法中,工件装卡在回转工作台上,通过回转工作台的转动调整入射角的大小,入射角调整在30° -60°的范围内。
[0016]本发明将光学衍射理论应用到超精密车削表面微观形貌测量上。之所以会在表面看到色散现象,是因为已加工表面并不是理想的光滑表面,它会有刀具切削过后残留的纹理,这些特定的纹理相当于平面衍射光栅,对入射光有分光作用。由于入射光为复色光,通过色散系统(如棱镜、光栅)分光之后,被色散开的单色光会按照不同波长和级次依次排开,形成光谱。
[0017]平面反射光栅的方程式为:
[0018]η λ = d(sina 土sinf3) (I)。
[0019]当衍射光线和入射光线在光栅法线同侧时,为+ ;当衍射光线和入射光线在光栅法线两侧时,为_ ;其中:
[0020]η-光谱级次,η = 0,±1,±2,…;
[0021]λ-波长;
[0022]d-光栅常数;
[0023]a -入射角;
[0024]衍射角。
[0025]从光栅方程看出,当η = O时,即零级光谱,衍射角β与波长λ无关,即无分光作用,它的特点是强度最大,但无分光作用;当11 = ±1时,为一级光谱,此时,如果波长λ短时,衍射角β小,靠近零级光谱;波长λ长时,衍射角β大,远离零级光谱,实现了分光作用。一级光谱强度大,一般用于分析测定。因此,针对±1级反射光谱,测量不同波长光的强度和衍射角,计算出光栅常数d。光栅常数d就是工件表面微观形貌的横向周期信息,而工件表面微观形貌的横向周期信息是与衍射角相对应,纵向高度信息是与衍射光的强度相对应,通过光谱仪和光纤测头在不同位置的扫描测量,得到不同波长和级次的衍射角和光谱强度,将测量结果代入到光栅方程,计算出工件表面三维形貌的大小。
[0026]本发明与现有测量方法相比,具有如下优点:
[0027](I)本发明将可见光的衍射现象和平面反射光栅理论应用在超精密车削表面微观形貌的测量中,实现了非接触、无破坏地定量测量,而且光路容易调整,测量精度高,稳定性好。
[0028](2)本发明的测量范围取决于照射在工件表面上的光斑大小,通过调整小孔光阑的孔径,对光斑大小进行调整。
[0029](3)本发明测量速度快,不需要逐点扫描,使用环境对测量精度影响小,可以在加工现场使用该测量方法。
【附图说明】
[0030]图1为本发明的测量装置整体结构示意图;
[0031]图2为平面反
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1