线性多变量工业过程的全局最优控制器整定方法

文档序号:6280166阅读:180来源:国知局
专利名称:线性多变量工业过程的全局最优控制器整定方法
技术领域
本发明涉及的是一种工业过程控制技术领域的方法,具体是一种线性多变量工业过程的全局最优控制器整定方法。
背景技术
线性多输入多输出过程是工业生产中普遍存在的一类对象,而且随着各种各样的先进生产工艺的快速发展,越来越多的生产过程被构造为高维多变量控制系统,从而实现高效率地生产高质量的产品。然而由于多变量过程的各输出通道之间存在交联耦合作用,使得大多数已发展的单变量控制方法很难用于多变量过程。虽然目前已经有很多面向多变量控制系统的设计方法,主要包括线性二次最优(LQG)设计方法,定量反馈方法,奈奎斯特阵列方法,序列回差方法,并矢展开法,预测控制方法等,但是大多方法都不能很好的解决多变量系统鲁棒性设计问题。近来,H2最优设计方法受到了越来越多的关注。H2最优控制的概念就是要找到一个控制器,使它不但能令闭环系统稳定,而且能最小化给定的H2性能指标。许多控制器设计问题都可以归结为H2最优化问题并依靠不同的数学工具来得到解,主要包括Zhou等提出的状态空间解以及Kucera等提出的多项式方法。
经过对现有技术文献的检索发现,在这个领域的一个重要成果是国际著名学者Morari在文献《Robust Process Control》(鲁棒过程控制,Prentice Hall,NJ,1989)中提出的内部模型控制方法(IMC)。该方法针对线性多变量控制系统,利用被控模型的内外分解来推倒最优控制器,以实现系统性能达到H2最优。该方法具有物理意义直观,方便广大工程设计人员理解等优点,但是从严格意义上讲,该方法仍然是一种状态空间方法,因为这种方法主要是依靠状态空间方法推导最优控制器。需要指出的是,目前针对具工业多变量过程的最优控制器整定方法大都无法实现在线调节,因而不便于实际推广应用。

发明内容
本发明的目的在于克服现有技术的不足,提出一种线性多变量工业过程的全局最优控制器整定方法。使本发明的控制器整定过程只需要考虑系统的输入输出信息,不涉及状态变量;控制器能保证系统H2全局最优,并能通过简单规则调节控制器参数以有效地调节系统性能和鲁棒性,解决各种不同的工业多输入多输出生产工艺过程的上述问题。
本发明是通过以下技术方案实现的,本发明基于单位闭环反馈控制结构,首先利用提出的改进的内外分解方法对被控对象的传递函数矩阵模型进行分解,基于这个分解求解最优控制器,然后在监控模块中实现控制作用。实际整定控制器时,在线单调地增减每列控制器中的单一调节参数,直至获得要求的控制系统标称性能及其鲁棒稳定性,并以最佳的方式在两者之间进行折衷。
本发明在现有的电子监控设备和工控计算机中直接运行和实施,具体步骤如下第一.通过组态界面启动主机发出的采样命令,当工控机的检测部分接到采样命令后,对被控制对象进行采样滤波,由模拟量输入通道将采样信号送入检测变送装置,再经A/D转换后得到数字信号后对对象进行辨识,对象辨识模块辨识出线性多变量过程的模型参数后,将模型参数送到主机的存储单元RAM中并由主机负责将数据显示在组态界面上。其中多变量对象在线辨识方法有很多种,如继电反馈法等,可以参见相关技术文献,在这里不再详述并假设辨识过程已经完成。
第二.启动工控机的CPU调用事先编写好的程序解析设计出最优控制器。详细的算法步骤如下1)利用改进内外分解方法对线性多变量过程的辨识模型进行分解,分解形式如下G(s)=GO(s)GA(s)GMP(s) (1)其中
GO(s)=Σj=1p(-s/zcj+1s/z‾cj+1)a...(2)]]>GA(s)=I-B*(sI+A)-1F-1B (3)GMP(s)=Σj=1p(s/zcj+1-s/z‾cj+1)a[I-B-1F(sI+A‾)B*-1]G(s)...(4)]]>这里zcj是系统传递函数矩G(s)的公共零点,p是G(s)的公共零点的个数,若p=0,则a=0,否则a=1。另外, B=B1···BrzBj=vj1···vjkj]]>F是Lyapunov方程FA+ATF=BB*的解。zj为系统开右半平面零点,重数为kj,vkj,j=1...rz(vkj≠0,),为其零点方向,满足vj1GA(zj)=0(7)lims→zjdldsl{[Σi=-kj-1vj(i+kj+1)(-s+zj)i+kj]GA(s)}=0,l=0,1,2,···,kj-1...(8)]]>vkj的计算如下vj1G(zj)=0,vj2G(zj)=vj1G(1)(zj),...
vjkjG(zj)=Σl=1kj-1(-1)kj-l+1vjl(kj-l)!Gkj-l(zj),]]>
F=Fij,Fij=[fxyij],fxyij=vixvjy*z‾j+zi+f(x-1)yij+fx(y-1)ijz‾j+zi.]]>2)由于实际工业过程中往往存在各种不确定性,对系统的输出响应会产生不利影响,为此引入以下调节因子来设计最优控制器,从而保证控制器的动态调节能力,具体调节因子的形式为J(s)=diag{J1(s),...,Jp(s)} (10)Ji(s)=1(λis+1)ni...(11)]]>其中,λi是可调参数,用于在线调节和整定控制器以实现最优的控制性能。需要指出的是λi的初始值可由操作人员根据过程的辨识模型参数选择,并通过组态界面传输给控制器解析设计程序。终值则是根据要求的闭环响应曲线在线调节获得,具体见第五步。λi的初始值设定规则是可调参数初始值应该根据具体设计要求来设定,一般可以取控制对象传函矩阵中相应的对角元素的时间常数的1-1.5倍。
3)依据H2最优控制理论和已设计出的最优控制器的调节因子,设计H2最优控制器为Copt(s)=GMP-1(s)GA-1(0)J(s)[I-G(s)GMP-1(s)GA-1(0)J(s)]-1...(12)]]>第三.离散化最优控制器表达式,得到当前时刻控制量,具体如下先对控制器中每个元素进行离散化,并化成形如式(13)的标准形式Cij(z)=b1+b2z-1+···bm-1z-(β-1)a1+a2z-1+···an-1z-(a-1)=uij(z)eij(z)...(13)]]>由表达式(13)得控制器输出控制量的分量表达式a1uij(z)+a2uij(z-1)+...an-1uij(z-α+1)=b1eij(z)+b2eij(z-1)+...bm-1eij(z-β+1)(14)将上式写成时间递推形式为如下形式
a1uij(k)+a2uij(k-1)+...an-1uij(k-α+1)=b1eij(k)+b2eij(k-1)+...bm-1eij(k-β+1)(15)由此得到控制器第i个输出控制量的表达式如下式(16)所示ui(k)=Σj=1nuij(k)...(16)]]>上述表达式(13)中α,β分别表示控制器每一个元素分子分母的阶次。表达式(13-16)式中ui(k)-当前(k)时刻控制器的第i个输出控制量uij(k)-当前(k)时刻第Cij(z)控制器的输出控制量eij(k)-当前(k)时刻第Cij(z)控制器的输入偏差量uij(k-α+1)-当前(k-α+1)时刻第Cij(z)控制器的输出控制量eij(k-β+1)-当前(k-β+1)时刻第Cij(z)控制器的输入偏差量ui(k)-当前(k)时刻控制器第i个输出控制量第四.对ui(k),i=1,...,n进行限幅,防止积分饱和,然后由D/A转换后输出至执行器,由执行器作用到被控对象,使被控对象运行在给定的范围内。
第五.通过组态界面对控制器参数进行在线调节和整定,如此周而复始实现控制。调节参数λi的在线整定规则调小λi可以加快对应的过程输出响应速度,提高控制系统的标称性能,但是相应所需的第i列的控制器的输出能量要增大,并且它所对应的执行机构所需要提供的输出能量也要增大。在面临被控过程的未建模动态特性时,不利于控制系统的鲁棒稳定性;相反,增大λi会使对应的过程输出响应变缓,但是所要求的第i列的控制器的输出能量减小,并且其所对应的执行机构所需要的输出能量也会减小,有利于提高控制系统的鲁棒稳定性。因此实际整定调节参数λi时,应在控制系统输出响应的标称性能与鲁棒性和每个控制器的输出之间权衡。
本发明提出的线性多变量工业过程的全局最优控制器整定方法的突出优点是1.实现闭环系统性能H2全局最优的控制器是解析的,因而极大地简化了设计工作;2.控制器设计过程对过程辨识模型要求低,不需要过程状态变量信息;3.全局最优控制器矩阵中的每列子控制器均为单参数整定且都由同一参数整定,可以实现在线单调地定量调节系统性能;4.控制器整定方法能够保证控制系统具有良好的鲁棒稳定性,对于过程参数发生变化不敏感,可以在较大范围内适应被控过程建模误差以及过程参数摄动。


图1为本发明给出的最优控制器的整定方法所基于的闭环控制结构图。
图2为采用本发明方法的工控系统的工作流程图。
图3为实际工厂对象的输出闭环响应。
其中,图3(a)示出了在第一个阶跃设定点输入和阶跃干扰输入作用下系统输出的响应曲线,图3(b)示出了第二个阶跃设定点输入和阶跃干扰输入作用下作用下系统输出的响应曲线,其中,实线为输出y1的响应曲线,点线为输出y2的响应曲线。
图4为在有乘性不确定性作用下,实际工厂对象在第一个阶跃输入和阶跃干扰输入作用下的输出闭环响应。
其中,图4(a)示出了输出y1的响应曲线,图4(b)示出了输出y2的响应曲线。其中,点线表示系统在有乘性不确定性情况下,没有调节控制器参数的输出响应曲线,实线表示系统在有乘性不确定性情况下,调节控制器参数后的输出响应曲线。
图5为在有乘性不确定性作用下,实际工厂对象在第二个阶跃输入和阶跃干扰输入作用下的输出闭环响应。
其中,图5(a)示出了输出y1的响应曲线,图5(b)示出了输出y2的响应曲线。其中,点线表示系统在有乘性不确定性情况下,没有调节控制器参数的输出响应曲线,实线表示系统在有乘性不确定性情况下,调节控制器参数后的输出响应曲线。
图4和图5表明采用本发明中最优控制方法的实施例系统中,当参数出现不确定性时,通过单调的调节控制器参数,依然可以保证控制系统的鲁棒性,并获得满意的控制效果。
具体实施例方式
下面结合附图对本发明的实施例作详细说明本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例。
如图1所示,本实施例提出的最优控制器的整定方法所基于的闭环控制结构。其中C为控制器,G为被控对象,r和y分别为闭环系统的输入和输出,u为控制器输出,d为扰动输入,e偏差信号。实际运行实施时,实际工业过程就是被控对象,控制器则是利用工控机来实现。控制器整定过程是根据实际工业过程的工况对工控机中相应的控制程序进行调节,以保证实际工业过程达到期望的运行状态的过程。
如图2所示,为本实施例采用的工控系统的工作流程图。系统进入控制阶段后,用户启动工控机的CPU,工控机读取监控模块中的程序,顺序执行控制过程首先对采样信号进行检测变送和A/D转换等输入预处理得到数字量输入信号,判断该信号极性,并据此计算误差信号估算最佳被控过程辨识模型参数,然后工控机调用最优控制器设计程序计算得到最优控制器初始参数,并最终得到控制信号。该控制信号经过限幅和D/A转换等处理后去驱动被控系统的执行机构以实现了对被控对象的控制,然后用户根据当前时刻过程响应特征在线调节控制器参数,如此周而复始完成最优控制器的整定。
以下本实施例考虑以下工厂模型,G(s)=1(s+1)3(s-1)2(s-1)2(s-1)(s-2)2(s-1)(s-2)]]>第一步首先由工业控制系统中的辨识模块依据常用的辨识方法如阶跃响应法,对被控对象进行模型参数的辨识,得到被控对象的传递函数矩阵G(s)。同时得到重数为3的NMP零点s=1和重数为1的NMP零点s=2,并且得到系统的公共零点s=1。
第二步启动工控机的CPU调用事先编制好程序解析设计出最优控制器。具体计算过程如下1)对控制对象传递函数矩阵分解,首先根据公式(5)-(8)得到A=1002,B=1001,F=1/2001/4]]>然后应用公式(2)-(4)得到GO(s)=-s+1s+1]]>GA(s)=-s+1s+1[I-B*(sI+A‾)-1F-1B]=-s+1s+1s-1s+100s-2s+2;]]>GMP(s)=s+1-s+1GA-1(s)G(s)=-1(s+1)2s+1s+1s+22(s+2);]]>2)应用公式(9)设计最优内模控制器Qopt(s)为如下形式Qopt(s)=GM-1(s)GA-1(0)=s+1s+22(s+2)-(s+1)-(s+2)s+1]]>3)按照公式(10),(11)设计动态调节因子为如下形式J(s)=1λ1s+1001λ2s+1]]>4)应用公式(12)设计最优控制器Cop(s)为如下形式Copt(s)=2(s+1)3s(λ1s2+2λ1s+λ1+4)-(s+1)3s(λ2s2+3λ2s+2λ2+6)-(s+1)3s(λ1s2+2λ1s+λ1+4)(s+1)3s(λ2s2+3λ2s+2λ2+6)]]>其中,可调参数的初始值分别设置为λ1=1.25,λ2=1.05。
第三步启动工控机的CPU读取控制器可调参数初始值,并根据(13-16)式得到当前时刻的控制量。
第四步对ui(k),i=1,2进行限幅,防止积分饱和,然后由D/A转换后输出至执行器,由执行器作用到被控对象,使被控对象运行在给定的范围内。此时组态界面上显示的是系统闭环响应曲线第五步,观察系统闭环响应曲线,通过组态界面对控制器进行在线调节和整定。仿真实验时,先在t=0秒时刻给第一路输入量加入单位阶跃输入信号r1=1/s,而第二路输入信号为r2=0,同时在t=20秒时刻给两路输入都加入阶跃扰动输入,所得到的系统闭环响应曲线为图3中所示,图4给出了当r1=0和r2=1/s,同时在t=20秒时刻给两路输入都加入阶跃扰动输入时的系统闭环响应曲线。对这个对象,应用本发明设计的最优控制器实现了两路闭环响应解耦。
现在假设实际存在被控过程G的乘性输入不确定性ΔI=diag{(s+0.3)/(s+1),(s+0.3)/(s+1)},它可以近似地物理解释为,被控过程的两个输入调节阀在高频段具有高达100%的不确定性,并且在低频段工作范围具有将近30%的不确定性。在这种严重的过程输入不确定性下进行如上所述仿真实验,本实施例给出的控制器的整定方法所得到的过程输出响应的计算机仿真结果如附图4和附图5所示。
由图4和图5可以看到,本发明给出的控制器的整定方法(实线)能够良好地保证系统的给定值响应和负载干扰响应的鲁棒稳定性。此外可以看到,单调地增大控制器c11和c21中的同一调节参数λ1,例如令其为2.7,就可以使第1个过程输出的给定值响应的振荡减小,如图4中的点线所示;同时单调地减小控制器c12和c22中的同一调节参数λ2,例如令其为0.7,就可以使第2个过程输出的给定值响应的上升速度加快,如图5中的点线所示。因此,采用本实施例给出的控制器的整定方法可以很方便地在线进行单调地调节系统输出响应,从而达到实际要求的工作指标。
由于本发明针对工业过程中一般线性多输入多输出过程模型给出了最优控制器的设计方法,所以适用于各种不同的多输入多输出生产过程。本发明给出的线性多变量过程最优控制器的解析设计方法可广泛应用于石化、冶金、医药、建材和纺织等行业的生产过程。
权利要求
1.一种线性多变量工业过程的全局最优控制器整定方法,其特征在于,包括如下具体步骤第一.通过组态界面启动主机发出的采样命令,当工控机的检测部分接到采样命令后,对被控制对象进行采样滤波,由模拟量输入通道将采样信号送入检测变送装置,再经A/D转换后得到数字信号后对对象进行辨识,对象辨识模块辨识出线性多变量过程的模型参数后,将模型参数送到主机的存储单元RAM中并由主机负责将数据显示在组态界面上;第二.启动工控机的CPU调用事先编写好的程序解析设计出最优控制器,最优控制器形式为Copt(s)=GMP-1(s)GA-1(0)J(s)[I-G(s)GMP-1(s)GA-1(0)J(s)]-1]]>其中GA(s)=I-B*(sI+A)-1F-1BGMP(s)=Σj=1p(s/zcj+1-s/z‾cj+1)a[I-B-1F(sI+A‾)B*-1]G(s)]]>zcj是系统传递函数矩G(s)的公共零点,p是G(s)的公共零点的个数,若p=0,则a=0,否则a=1,这里 B=B1···BrzBj=vj1···vjkj]]>F=[Fij],Fij=[fxyij],]]>x,y=1,…kj,fxyij=vixvjy*z‾j+zi+f(x-1)yij+fx(y-1)ijz‾j+zi]]>J(s)=diag{J1(s),…,Jp(s)},Ji(s)=1(λis+1)ni]]>其中zj为系统开右半平面零点,重数为kj,vkj,j=1…rz,vkj≠0,为其零点方向;rz是系统开右半平面零点的个数;λi是可调参数,用于在线调节和整定控制器以实现最优的控制性能;第三.离散化最优控制器表达式,得到当前时刻控制器的第i个输出控制量,具体如下ui(k)=Σj=1nuij(k)]]>其中uij(k)=1a1[b1eij(k)+b2eij(k-1)+···bm-1eij(k-β+1)]]>-a2uij(k-1)-…an-1uij(k-α+1)]a1…an-1和b1…bm-1是控制器中第ij个元素离散化并化成如下式标准形式Cij(z)=b1+b2z-1+···bm-1z-(β-1)a1+a2z-1+···an-1z(α-1)]]>中的系数,α,β分别表示控制器中第ij个元素分子分母的阶次,上述表达式中ui(k)-当前(k)时刻控制器的第i个输出控制量uij(k)-当前(k)时刻第Cij(z)控制器的输出控制量,eij(k)-当前(k)时刻第Cij(z)控制器的输入偏差量,uij(k-α+1)-当前(k-α+1)时刻第Cij(z)控制器的输出控制量,eij(k-β+1)-当前(k-β+1)时刻第Cij(z)控制器的输入偏差量,ui(k)-当前(k)时刻控制器第i个输出控制量;第四.对ui(k),i=1,…,n进行限幅,防止积分饱和,然后由D/A转换后输出至执行器,由执行器作用到被控对象,使被控对象运行在给定的范围内;第五.通过组态界面对控制器参数进行在线调节和整定,如此周而复始实现控制。
2.如权利要求1所述的线性多变量工业过程的全局最优控制器整定方法,其特征是,调节参数λi的初始值由操作人员根据过程的辨识模型参数选择,并通过组态界面传输给控制器解析设计程序,终值则是根据要求的闭环响应曲线在线调节获得,其中λi的初始值设定规则是可调参数初始值应该根据具体设计要求来设定,取控制对象传函矩阵中相应的对角元素的时间常数的1-1.5倍。
3.如权利要求1所述的线性多变量工业过程的全局最优控制器整定方法,其特征是,调节参数λi的在线整定规则调小λi可加快对应的过程输出响应速度,提高控制系统的标称性能,但是相应所需的第i列的控制器的输出能量要增大,并且它所对应的执行机构所需要提供的输出能量也要增大,在面临被控过程的未建模动态特性时,不利于控制系统的鲁棒稳定性;相反,增大λi会使对应的过程输出响应变缓,但是所要求的第i列的控制器的输出能量减小,并且其所对应的执行机构所需要的输出能量也会减小,有利于提高控制系统的鲁棒稳定性;因此实际整定调节参数λi时,应在控制系统输出响应的标称性能与鲁棒性和每个控制器的输出之间权衡。
全文摘要
一种线性多变量工业过程的全局最优控制器整定方法,属于工业控制技术领域。本发明系统进入控制阶段后,用户启动工控机的CPU,工控机读取监控模块中的程序,顺序执行控制过程首先对采样信号进行检测变送和A/D转换等输入预处理得到数字量输入信号,判断该信号极性,并据此计算误差信号估算最佳被控过程辨识模型参数,然后工控机调用最优控制器设计程序计算得到最优控制器初始参数,并最终得到控制信号。该控制信号经过限幅和D/A转换等处理后去驱动被控系统的执行机构以实现了对被控对象的控制,然后用户根据当前时刻过程响应特征在线调节控制器参数,如此周而复始完成最优控制器的整定。本发明可广泛应用于多种行业中各类企业的生产过程控制。
文档编号G05B13/04GK1949107SQ20061011811
公开日2007年4月18日 申请日期2006年11月9日 优先权日2006年11月9日
发明者张卫东, 刘媛媛, 顾诞英, 王伦, 王萍 申请人:上海交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1