一种螺旋刀具车削轨迹的误差预测方法与流程

文档序号:14748886发布日期:2018-06-22 09:34阅读:309来源:国知局

本发明涉及一种刀具车削轨迹的误差预测方法,具体涉及一种螺旋刀具车削轨迹的误差预测方法。



背景技术:

螺旋刀具车削轨迹在现有加工方法中使用非常广泛,比如光学自由曲面的加工中,刀具轨迹规划普遍采用的等角度、等弧长刀具轨迹,另外柱面特征正弦曲面、鼓形曲面、马鞍曲面以及这些特征的复合特征曲面加工中,同样可以采用螺旋刀具车削的轨迹规划,对于螺旋刀具车削轨迹,在进行轨迹规划过程中需要考虑到约束相关的误差来进行轨迹规划参数的设定。

现有的机械加工通常采用尝试加工测量加工精度的方法,耗时费力,具有一定的盲目性,加工之前不进行误差预测,即使进行误差预测计算,误差计算种类普遍只计算残留高度误差和弓高误差,并且残留高度误差的计算只对相邻刀具车削轨迹刀触点之间的残留高度误差进行计算,而忽略了在实际加工中,刀具的走刀轨迹并不是严格的圆弧曲线,而是车削点之间的直线段逼近曲线,而不同螺旋刀具车削轨迹直线段之间同样存在残留高度误差,需要求解并对其进行误差数值的约束;对于现存的弓高误差的求解方法,普遍是只对误差数值进行求解,而不对误差的正负进行判定。对于现存的误差求解方法,存在较大的缺陷和漏洞,对所加工的曲面特征无法确切保证加工精度。



技术实现要素:

本发明提供一种螺旋刀具车削轨迹的误差预测方法,以解决现有的误差求解方法存在较大的缺陷和漏洞、对所加工的曲面特征无法确切保证加工精度的问题。

本发明采取的技术方案是,包括下列步骤:

(1)、相邻两车削轨迹刀触点之间残留物差δ1的计算,包括获取螺旋刀具车削轨迹参数:螺距f、径向所分份数t、轴向划分刻度d、刀具半径r,计算所求误差点处曲率RQL大小,判断求解残留误差采用的方法,解得残留物差δ1,然后和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重新对δ1进行计算与δ0比较;

(2)、相邻两车削轨迹刀触点之间直线间残留物差δ2的计算,包括以下步骤:

(2a)、求解相邻刀触点之间中点(x1,y1,z1),求取相邻两车削轨迹刀触点之间直线间中点(x2,y2,z2);

(2b)、计算该点(x2,y2,z2)到Z轴的距离l1,以及该点对应所加工特征曲面上点到Z轴距离l2,再进行求解该点处残留误差δ21的大小;

(2c)、然后求解该点法向量

(2d)、将l1与l2之差δ22投影到所求解法向量方向得δ'22,最终通过判断l1与l2大小关系确定δ21与δ'22运算关系得到相邻两车削轨迹刀触点之间直线间残留误差δ2的大小,然后和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重新对以上两种误差进行计算与δ0比较;

(3)、弓高误差δ3的计算,包括以下步骤:

(3a)、首先进行计算两相邻刀触点之间步长lBC;

(3b)、求解两相邻刀触点中点处所对应螺旋刀具轨迹上点的曲率半径R'QL;

(3c)、然后求解两相邻刀触点中点到Z轴距离l3,再求解两相邻刀触点中点对应特征曲面上点到Z轴距离l4;

(3d)、最后判断l3与l4大小关系,确定弓高误差正负,通过所推导公式进行弓高误差δ3的求解,然后和所要求加工精度δ0进行比较,满足要求则确定加工参数进行后续加工,不满足要求则修改相应参数重新对以上三种误差进行计算与δ0比较。

所述第一种误差δ1计算中,螺旋刀具车削轨迹参数:螺距f、径向所分份数t、轴向划分的刻度d、刀具半径r和计算所求误差点处曲率RQL大小中,螺旋刀具车削轨迹参数螺距f、径向所分份数t、轴向划分的刻度d、刀具半径r均为已设置好的螺旋刀具车削轨迹参数;计算所求误差点处曲率RQL大小,即计算径向所分每一母线上相应点处的曲率大小,母线方程为:

xi=F(zi)

其中i=1,2,3···N;

曲率计算公式如下:

其中x为所加工曲面特征的母线方程式,等式中x'、x”分别为母线方程的一、二阶导数,由曲率与曲率半径的关系式可得到所求点处的曲率半径RQL,关系式如下:

通过对相应点处曲率的求解,判断曲率正负,即对应曲线的凹凸来确定所采用的计算等式,主要分一下三种情况:

1)曲率等于零

曲率等于零情况说明所加工表面为平面,通过几何关系推导得到求解相邻两车削轨迹刀触点之间残留物差δ1的计算,计算等式如下:

其中r为所选用刀具刀尖圆弧半径,f为加工过程中每车削工件一周刀具的轴向进给量,即螺距;

2)曲率大于零

曲率大于零情况说明所计算点处的曲线为凹形,通过几何关系推导得到求解两相邻车削轨迹刀触点之间残留误差δ1的计算,计算等式如下:

3)曲率小于零

曲率小于零情况说明所计算点处的曲线为凸形,通过几何关系推导得到求解两相邻车削轨迹刀触点之间残留物差δ1的计算,计算等式如下:

将δ1和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重复第一种误差求解,并与δ0进行比较。

所述第二种误差δ2计算步骤(2a)中,求解相邻刀触点之间中间点(x1,y1,z1)和求取相邻两刀触点车削轨迹之间直线间中点(x2,y2,z2),其中求解相邻刀触点之间中间点(x1,y1,z1)为螺旋刀具轨迹中同一轨迹上相邻两点之间的中点,计算等式如下:

其中x,y,z为螺旋刀具轨迹刀触点,i=1,2,3···N-1;

求取相邻两刀触点车削轨迹之间中点(x2,y2,z2),为螺旋刀具轨迹中上一圈车削轨迹点与轴向进给螺距距离所得的车削轨迹之间的中点,由所求解的(x1,y1,z1)点求解所得,即轴向(x1,y1,z1)相邻两点之间的中点,计算等式如下:

其中j=1,2,3···N-t-1。

所述第二种误差δ2计算步骤(2b)中,计算该点(x2,y2,z2)到Z轴距离l1,以及该点对应所加工特征曲面上点到Z轴距离l2,再进行求解该点处残留误差δ21的大小;l1为计算每一点(x2,y2,z2)到Z轴距离,l2为每一点(x2,y2,z2)所对应特征曲面上每一点(x'2,y'2,z'2)到Z轴距离;

计算(x2,y2,z2)到Z轴距离l1,计算公式为:

其中j=1,2,3,···N-t-1;

计算距离l2只需将每一点(x2,y2,z2)坐标中Z坐标代入母线方程即可求出,即:

l2j=xj=F(z2j)

其中j=1,2,3,···N-t-1;

求解(x2,y2,z2)处残留误差δ21的大小,首先计算(x2,y2,z2)点处的曲率,计算公式为:

其中x为所加工曲面特征的母线方程,等式中x'、x”分别为母线方程的一、二阶导数,由曲率与曲率半径的关系式可得到所求点处的曲率半径R'QL,关系式如下:

通过对相应点处曲率的求解,判断曲率正负,即对应曲线的凹凸来确定所采用的计算等式,主要分以下三种情况:

1)曲率等于零

曲率等于零情况说明所加工表面为平面,通过几何关系推导得到求解相邻两车削轨迹刀触点之间残留误差δ21的计算,计算等式如下:

其中r为所选用刀具刀尖圆弧半径,f为加工过程中每车削工件一周刀具的轴向进给量,即螺距;

2)曲率大于零

曲率大于零情况说明所计算点处的曲线为凹形,通过几何关系推导得到求解两相邻车削轨迹刀触点之间残留误差δ21的计算,计算等式如下:

3)曲率小于零

曲率小于零情况说明所计算点处的曲线为凸形,通过几何关系推导得到求解两相邻车削轨迹刀触点之间残留误差δ21的计算,计算等式如下:

通过以上计算即可求得误差δ21的大小。

所述第二种误差δ2步骤(2c)中,求解该点(x2,y2,z2)法向量,根据几何关系可知,法向量即为该点处的刀触点、刀位点两点之间向量,计算公式为:

相邻刀触点之间中点计算公式:

其中x为螺旋刀具轨迹刀触点,i=1,2,3···N-1;

两相邻车削轨迹刀触点之间点计算公式:

其中j=1,2,3···N-t-1,同理刀位点计算方法同上,得两相邻车削轨迹刀位点之间点刀位点坐标(x”2j,y”2j,z”2j),通过计算即可求得点(x2,y2,z2)处的法向量计算公式为:

其中j=1,2,3···N-t-1。

所述第二中误差δ2步骤(2d)中,将l1与l2之差δ22投影到所求解法向量方向,最终通过判断l1与l2大小关系确定δ21与δ22运算关系得到相邻两车削轨迹刀触点之间直线间残留误差δ2的大小,δ22计算公式为:

δ22j=l1j-l2j

其中j=1,2,3···N-t-1;

将δ22投影到所求解法向量方向需要计算向量与Z轴夹角θ,计算公式如下:

其中向量可取(0,0,1),将δ22投影到法向量方向公式求解δ'22为:

判断l1与l2大小关系确定δ21与δ22运算关系得到相邻两车削轨迹刀触点之间直线间残留误差δ2的大小,计算公式为:

当l1>l2时:

δ2=δ21+δ'22

当l1<l2时:

δ2=δ21+δ'22

当l1=l2时:

δ2=δ21

通过以上计算可以解得误差δ2的大小,将δ2和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重复以上两种误差计算重新与δ0比较。

所述第三种误差δ3步骤(3a)中,首先进行计算相邻刀触点之间步长lBC,为计算螺旋刀具轨迹相邻两点之间的直线距离,如下式:

其中x,y,z为螺旋刀具轨迹刀触点,i=1,2,3···N-1。

所述第三种误差δ3步骤(3b)中,求解两相邻刀触点中点处所对应螺旋刀具轨迹上点处的曲率半径R”QL,计算公式为:

其中F'、F”为螺旋线参数方程对变量求一、二阶导数后组成的向量,F'=(x',y',z'),F”=(x”,y”,z”)。

所述第三种误差δ3步骤(3c)中,求解两相邻刀触点中点到Z轴距离l3和求解两相邻刀触点中点对应特征曲面上点到Z轴距离l4,其中求解两相邻刀触点中点到Z轴距离l3为求解相邻两刀触点之间的中点(x1,y1,z1)到Z轴的距离,求解公式为:

其中i=1,2,3···N-1;

求解两相邻刀触点中点对应特征曲面上点到Z轴距离l4,求解l4可以通过计算两相邻刀触点中点(x1,y1,z1)所对应的Z轴坐标值,通过母线方程计算出距离l4,如下式:

l4i=xi=F(z1i)

其中i=1,2,3···N-1。

所述第三种误差δ3步骤(3d)中,最后判断l3与l4大小关系,确定弓高误差正负,通过所推导公式进行弓高误差δ3的求解,通过判断所求解的l3与l4的大小关系,确定车削过程中刀具对工件是否过切,当l3大于l4时,未发生过切,相反则发生过切,相应的确定计算所得弓高误差数值的正负表示是否发生过切,计算公式如下:

当l3>l4时:

当l3<l4时:

通过求解即可得出相应点处的弓高误差δ3,将δ3和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重复以上三种误差计算进行重新计算比较。

本发明的有益效果是,针对现有加工中采用尝试加工保证加工精度和对误差进行简单计算的现状,本发明在计算螺旋刀具车削轨迹误差中,除了对普遍计算的相邻两车削轨迹刀触点之间的残留高度误差进行了计算,同时对相邻两车削轨迹刀触点之间直线间残留高度进行了计算,扩大了误差种类的计算,更好的控制了所加工的特征曲面的精度范围;再者是对弓高误差的计算,本发明通过计算两相邻刀触点中点到Z轴的距离和两相邻刀触点中点所对应的特征曲面上点到Z轴的距离,并将两距离进行大小比较,进而判断弓高误差的正负,区分加工过程中刀具对工件是过切还是切削不足,使设计加工人员更清楚的知道影响所加工曲面特征精度的误差因素,方便进一步的参数设计加工。

附图说明

图1是本发明螺旋刀具车削轨迹的误差预测方法的流程图;

图2是残留误差示意图;

图3是残留误差局部放大图;

图4是求解相邻两车削轨迹刀触点之间残留误差需求点示意图;

图5是求解残留误差δ1曲率等于零情况示意图;

图6是求解残留误差δ2曲率大于零情况示意图;

图7是求解残留误差δ3曲率小于零情况示意图;

图8是相邻两车削轨迹刀触点之间残留误差图像;

图9是相邻两车削轨迹刀触点之间直线间残留误差所需求取点示意图;

图10是相邻两车削轨迹刀触点之间直线间残留误差图像;

图11是弓高误差示意图;

图12是弓高误差示意图局部放大图;

图13是两相邻刀触点中间点(x1,y1,z1)到Z轴距离l3与两相邻车削轨迹刀触点之间直线间点(x2,y2,z2)到Z轴距离l4的图形示意图;

图14是弓高误差图像;

图中,M为刀触点(x,y,z),N为两相邻车削轨迹刀触点中间点,P为两相邻刀触点中间点(x1,y1,z1),Q为两相邻车削轨迹刀触点之间直线间点(x2,y2,z2),r为刀具半径,f为进给量,H为残留误差高度,RQL为曲率半径。

具体实施方式

为了使本发明的目的、技术方案以及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。但应当理解,此处的实例讲解仅仅用以更详细的对本发明进行说明,并不用于限定本发明。

为了更好的对本发明一种螺旋刀具车削轨迹的误差预测进行讲解,以正弦波柱面加工中所采用的螺旋刀具车削轨迹为实例,对误差预测求解过程进行详细的介绍,但应理解的是本发明并不局限于此,同样适用于自由曲面特征加工、柱面多种特征复合曲面加工等中螺旋刀具车削轨迹的误差预测。图1为本发明步骤流程图,其中δ0为所要求误差最大值,包括以下误差计算种类和步骤:

(1)相邻两车削轨迹刀触点之间残留误差δ1的计算,主要包括获取螺旋刀具车削轨迹参数:螺距f、径向所分份数t、轴向划分刻度d、刀具半径r,计算所求误差点处曲率RQL大小,判断求解残留误差采用的方法,解得残留物差δ1,然后和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重新对δ1进行计算与δ0比较;

残留误差示意图如图2所示,其中残留误差局部放大图如图3所示;

所述第一类误差δ1计算中,螺旋刀具车削轨迹参数:螺距f、径向所分份数t、轴向划分的刻度d、刀具半径r和计算所求误差点处曲率大小中,螺旋刀具车削轨迹的螺距f取0.2、径向所分份数t取50、轴向划分的刻度d为螺距和径向所分份数相除取0.004,刀具半径r取0.3,参数均为已设置好的螺旋刀具车削轨迹参数;计算所求误差点处曲率大小,即计算径向所分每一母线上相应点处的曲率大小;

母线方程为:

xi=F(zi)

其中i=1,2,3···N;

曲率计算公式如下:

其中x为所加工曲面特征的母线方程式,等式中x'、x”分别为母线方程的一、二阶导数。由曲率与曲率半径的关系式可得到所求点处的曲率半径RQL,关系式如下:

通过对相应点处曲率的求解,判断曲率正负,即对应曲线的凹凸来确定所采用的计算等式,对相邻两车削轨迹刀触点之间残留误差δ1进行求解,所对应点示意图如图4所示,主要分以下三种情况:

1)曲率等于零

曲率等于零情况说明所加工表面为平面,如图5所示,通过几何关系推导得到求解相邻两车削轨迹刀触点之间残留物差δ1的计算,计算等式如下:

其中r为所选用刀具刀尖圆弧半径,f为加工过程中每车削工件一周刀具的轴向进给量,即螺距;

2)曲率大于零(凹)

曲率大于零情况说明所计算点处的曲线为凹形,如图6所示,通过几何关系推导得到求解两相邻车削轨迹刀触点之间残留误差δ1的计算,计算等式如下:

3)曲率小于零(凸)

曲率小于零情况说明所计算点处的曲线为凸形,如图7所示,通过几何关系推导得到求解两相邻车削轨迹刀触点之间残留物差δ1的计算,计算等式如下:

所得相邻两车削轨迹刀触点之间残留误差图像如图8所示,将δ1和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重复第一种误差求解,并与δ0进行比较;

(2)相邻两车削轨迹刀触点之间直线间残留误差δ2的计算,主要包括以下步骤:(2a)求解相邻刀触点之间中点(x1,y1,z1),求取相邻两车削轨迹刀触点之间直线间中点(x2,y2,z2);(2b)计算该点(x2,y2,z2)到Z轴的距离l1,以及该点对应所加工特征曲面上点到Z轴距离l2,再进行求解该点处残留误差δ21的大小;(2c)然后求解该点法向量(2d)将l1与l2之差δ22投影到所求解法向量方向得δ'22,最终通过判断l1与l2大小关系确定δ21与δ'22运算关系得到相邻两车削轨迹刀触点之间直线间残留误差δ2的大小,然后和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重新对以上两种误差进行计算与δ0比较;

所述第二种误差δ2计算步骤(2a)中,求解相邻刀触点之间中间点(x1,y1,z1)和求取相邻两刀触点车削轨迹之间直线间中点(x2,y2,z2),其中求解相邻刀触点之间中间点(x1,y1,z1)示意图如9图所示,为螺旋刀具轨迹中同一轨迹上相邻两点之间的中点,计算等式如下:

其中x,y,z为螺旋刀具轨迹刀触点,i=1,2,3···N-1;

求取相邻两刀触点车削轨迹之间中点(x2,y2,z2),为螺旋刀具轨迹中上一圈车削轨迹点与轴向进给螺距距离所得的车削轨迹之间的中点,示意图如图9所示,由所求解的(x1,y1,z1)点求解所得,即轴向(x1,y1,z1)相邻两点之间的中点,计算等式如下:

其中j=1,2,3···N-t-1。

所述第二种误差δ2计算步骤(2b)中,计算该点(x2,y2,z2)到Z轴距离l1,以及该点对应所加工特征曲面上点到Z轴距离l2,再进行求解该点处残留误差δ21的大小;l1为计算每一点(x2,y2,z2)到Z轴距离,l2为每一点(x2,y2,z2)所对应特征曲面上每一点(x'2,y'2,z'2)到Z轴距离;

计算(x2,y2,z2)到Z轴距离l1,计算公式为:

其中j=1,2,3,···N-t-1;

计算距离l2只需将每一点(x2,y2,z2)坐标中Z坐标代入母线方程即可求出,即:

l2j=xj=F(z2j)

其中j=1,2,3,···N-t-1;

求解(x2,y2,z2)处残留误差δ21的大小,首先计算(x2,y2,z2)点处的曲率,计算公式为:

其中x为所加工曲面特征的母线方程,等式中x'、x”分别为母线方程的一、二阶导数,由曲率与曲率半径的关系式可得到所求点处的曲率半径R'QL,关系式如下:

通过对相应点处曲率的求解,判断曲率正负,即对应曲线的凹凸来确定所采用的计算等式,主要分以下三种情况:

1)曲率等于零

曲率等于零情况说明所加工表面为平面,通过几何关系推导得到求解相邻两车削轨迹刀触点之间残留误差δ21的计算,计算等式如下:

其中r为所选用刀具刀尖圆弧半径,f为加工过程中每车削工件一周刀具的轴向进给量,即螺距;

2)曲率大于零(凹)

曲率大于零情况说明所计算点处的曲线为凹形,通过几何关系推导得到求解两相邻车削轨迹刀触点之间残留误差δ21的计算,计算等式如下:

3)曲率小于零(凸)

曲率小于零情况说明所计算点处的曲线为凸形,通过几何关系推导得到求解两相邻车削轨迹刀触点之间残留误差δ21的计算,计算等式如下:

通过以上计算即可求得误差δ21的大小;

所述第二种误差δ2步骤(2c)中,求解该点(x2,y2,z2)法向量,根据几何关系可知,法向量即为该点处的刀触点、刀位点两点之间向量,计算公式为:

相邻刀触点之间中点计算公式:

其中x,y,z为螺旋刀具轨迹刀触点,i=1,2,3···N-1;

两相邻车削轨迹刀触点之间点计算公式:

其中j=1,2,3···N-t-1。同理刀位点计算方法同上,得两相邻车削轨迹刀位点之间刀位点坐标(x”2j,y”2j,z”2j),通过计算所得的点即可求得点(x2,y2,z2)处的法向量计算公式为:

其中j=1,2,3···N-t-1;

所述第二中误差δ2步骤(2d)中,将l1与l2之差δ22投影到所求解法向量方向,最终通过判断l1与l2大小关系确定δ21与δ22运算关系得到相邻两车削轨迹刀触点之间直线间残留误差δ2的大小,δ22计算公式为:

δ22j=l1j-l2j

其中j=1,2,3···N-t-1;

将δ22投影到所求解法向量方向需要计算向量与Z轴夹角θ,计算公式如下:

其中j=1,2,3···N-t-1;

其中向量可取(0,0,1)。计算完成向量与Z轴的夹角,可以将l1与l2之差δ22投影到所求解法向量方向得到δ'22,计算公式为:

判断l1与l2大小关系确定δ21与δ22运算关系得到相邻两车削轨迹刀触点之间直线间残留误差δ2的大小,计算公式为:

当l1>l2时:

δ2=δ21+δ'22

当l1<l2时:

δ2=δ21+δ'22

当l1=l2时:

δ2=δ21

通过以上计算可以解得误差δ2的大小,最终所得图像如图10所示,将δ2和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重复以上两种误差计算重新与δ0比较;

(3)弓高误差δ3的计算,主要包括以下步骤:(3a)首先进行计算相邻刀触点之间步长lBC;(3b)求解两相邻刀触点中点处所对应螺旋刀具轨迹上点的曲率半径R”QL;(3c)然后求解两相邻刀触点中点到Z轴距离l3,再求解两相邻刀触点中点对应特征曲面上点到Z轴距离l4;(3d)最后判断l3与l4大小关系,确定弓高误差正负,通过所推导公式进行弓高误差δ3的求解,然后和所要求加工精度δ0进行比较,满足要求则确定加工参数进行后续加工,不满足要求则修改相应参数重新对以上三种误差进行计算与δ0比较;

所述第三种误差δ3步骤(3a)中,首先进行计算相邻刀触点之间步长lBC,弓高误差示意图如图11所示,其中弓高误差局部放大图如图12所示,计算螺旋刀具轨迹相邻两点之间的直线距离公式如下:

其中x,y,z为螺旋刀具轨迹刀触点,i=1,2,3···N-1;

所述第三种误差δ3步骤(3b)中,求解两相邻刀触点中点处所对应螺旋刀具轨迹上点处的曲率半径R”QL,计算公式为:

其中F'、F”为螺旋线参数方程对变量求一、二阶导数后组成的向量,F'=(x',y',z'),F”=(x”,y”,z”)。

所述第三种误差δ3步骤(3c)中,求解两相邻刀触点中点到Z轴距离l3和求解两相邻刀触点中点对应特征曲面上点到Z轴距离l4;其中求解两相邻刀触点中点到Z轴距离l3为所求点(x1,y1,z1)到Z轴的距离,计算公式为:

其中i=1,2,3···N-1;

求解两相邻刀触点中点对应特征曲面上点到Z轴距离l4,可以通过计算两相邻刀触点中点(x1,y1,z1)所对应的Z轴坐标值,通过母线方程计算出距离l4,如下式:

l4i=xi=F(z1i)

其中i=1,2,3···N-1。l3与l4的图形示意图如图13所示,其中l4分为正弦曲面上凸曲面上的点到Z轴的距离和凹曲面上点到Z轴的距离,可结合图9观察此图看作图9俯视视角;

所述第三种误差δ3步骤(3d)中,最后判断l3与l4大小关系,确定弓高误差正负,通过所推导公式进行弓高误差δ3的求解,通过判断所求解的l3与l4的大小关系,确定车削过程中刀具对工件是否过切,当l3大于l4时,未发生过切,相反则发生过切,相应的确定计算所得弓高误差数值的正负表示是否发生过切,计算公式如下:

当l3>l4时:

当l3<l4时:

通过求解即可得出相应点处的弓高误差,所得弓高误差图像如图14所示,将δ3和所要求加工精度δ0进行比较,满足要求则进行下一种误差求解,不满足要求则修改相应参数重复以上三种误差计算进行重新计算比较。

本领域的技术人员容易理解,以上实例仅为更详细对本发明进行讲解,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1