电量计激活系统及电子设备的制作方法

文档序号:16872977发布日期:2019-02-15 20:48阅读:151来源:国知局
电量计激活系统及电子设备的制作方法

本申请涉及电子领域,尤其涉及一种电量计激活系统及电子设备。



背景技术:

随着电子技术的快速发展,电子设备逐渐向着小型化、集成化方向发展。为了保证电子设备的正常工作,在设计电池管理系统(Battery Management System,简称BMS)时,可以采用电量计量芯片(通常被简称为电量计)加微处理器的架构。

实际应用中,电量计在初次上电或处于休眠状态等情形下,需要对电量计进行激活才能使其正常工作。举例来说,为了降低设备功耗,在无需供电时,供电电源可能会进入休眠状态,相应的,电量计也会进入休眠状态。而此后,当供电电源从休眠状态切换至工作状态时,由于未被激活,会导致电量计无法正常工作。



技术实现要素:

本申请提供了一种电量计激活系统及电子设备,能够方便及时地实现电量计激活。

本申请的第一方面是为了提供一种电量计激活系统,包括:设置在供电电源和电量计之间的可控电路;

其中,所述可控电路的一端与所述供电电源连接,所述可控电路的另一端连接至所述电量计,所述可控电路的控制端与微处理器连接;

所述可控电路,用于在所述微处理器发出的激活信号下导通,以激活所述电量计,所述激活信号为所述微处理器检测到需要激活电量计时发出的。

优选的,所述微处理器与所述电量计连接;

所述微处理器,用于检测所述电量计的激活状态,并在所述电量计被激活后,向所述可控电路发送关断信号,以控制所述可控电路断开。

优选的,所述可控电路与所述电量计之间设置有供电端口;

所述可控电路的另一端与所述供电端口连接,所述供电端口与所述电量计连接。

优选的,所述可控电路包括:第一可控元件和第二可控元件;

所述第一可控元件的控制极与所述第二可控元件的供电极连接,所述第一可控元件的输出极与所述供电电源连接,所述第一可控元件的供电极与所述电量计连接;

所述第二可控元件的控制极与所述微处理器连接,所述第二可控元件的输出极接地,所述第二可控元件用于在所述微处理器发出的激活信号下导通,以联动控制所述第一可控元件导通。

优选的,所述系统还包括:第一二极管;

所述第一二极管的正极与所述供电电源连接,所述第一二极管的负极与所述第一可控元件的输出极连接。

优选的,所述系统还包括:设置在所述第一可控元件的与所述电量计之间的第一电阻;

所述第一电阻的一端与所述第一可控元件的供电极连接,所述第一电阻的另一端与所述电量计连接。

优选的,所述系统还包括:第二电阻和第三电阻;

所述第二电阻的一端与所述第一可控元件的输出极连接,所述第二电阻的另一端与所述第一可控元件的控制极连接;

所述第三电阻的一端与所述第一可控元件的控制极连接,所述第三电阻的另一端与所述第二可控元件的供电极连接。

优选的,所述系统还包括:第四电阻;

所述第四电阻的一端与所述第二可控元件的控制极连接,所述第四电阻的另一端与所述第二可控元件的输出极连接。

优选的,所述第一可控元件为PMOS管,所述第二可控元件为NMOS管;所述第一可控元件和所述第二可控元件的控制极为栅极,所述第一可控元件和所述第二可控元件的供电极为漏极,所述第一可控元件和所述第二可控元件的输出极为源极;或者,

所述第一可控元件为PNP晶体管,所述第二可控元件为NPN晶体管;所述第一可控元件和所述第二可控元件的控制极为基极,所述第一可控元件和所述第二可控元件的供电极为集电极,所述第一可控元件和所述第二可控元件的输出极为发射极。

本申请的第二方面是为了提供一种电子设备,包括:微处理器、电量计以及如前任一所述的电量计激活系统。

本申请提供的电量计激活系统及电子设备,包括连接在供电电源和电量计之间的可控电路,所述可控电路的控制端与微处理器连接,当微处理器检测到需要激活电量计时,可以控制可控电路导通,以通过供电电源向电量计充电实现对电量计的激活。本方案利用微处理器控制电量计的激活,能够方便及时地实现对电量计的自动激活,无需用户手动操作,并且本方案的电路简单,采用一些常规的元器件,能够有效节省成本。

附图说明

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。

图1为本申请实施例一提供的一种电量计激活系统的结构示意图;

图2为本申请实施例一提供的另一种电量计激活系统的结构示意图;

图3为本申请实施例一提供的又一种电量计激活系统的结构示意图;

图4为本申请实施例二提供的一种电量计激活系统的结构示意图;

图5A为本申请实施例二提供的另一种电量计激活系统的结构示意图;

图5B为本申请实施例二提供的又一种电量计激活系统的结构示意图;

图6为电量计的管脚连接示意图。

具体实施方式

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。

除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。需要说明的是,本文中的“第一”、“第二”仅用于区分,其并未对先后顺序进行限定。

图1为本申请实施例一提供的一种电量计激活系统的结构示意图;参考附图1可知,本实施例提供了一种电量计激活系统,该电量计激活系统用于通过微处理器方便及时地控制电量计激活,具体的,该电量计激活系统包括:

设置在供电电源BAT和电量计之间的可控电路1;

其中,所述可控电路1的一端与所述供电电源BAT连接,所述可控电路 1的另一端连接至所述电量计,所述可控电路1的控制端与微处理器连接;

所述可控电路1,用于在所述微处理器发出的激活信号下导通,以激活所述电量计,所述激活信号为所述微处理器检测到需要激活电量计时发出的。

本申请提供的电量计激活系统能够适用于各类电子设备中对电量计的激活控制。实际应用中,电子设备包括但不限于无人机、计算机、手机等电子设备。尤其能够适用于小型化电子设备,例如无人机等。以无人机为例,这种小型化设备体积小空间有限,故对电路的集成度有要求,本申请的电路结构简单,便于实现高集成度,无需采用占用空间大的芯片或复杂电路即可实现自动便捷地激活电量计。

具体的,供电电源BAT为电子设备的系统供电电源,举例来说,对于一些可安装配置电池的电子设备,安装至电子设备的电池即为提供供电的供电电源,可选的,供电电源BAT具体可以为电池的正极。

以实景场景举例来说:本方案中的可控电路1可用于控制电量计的激活。具体的,可控电路1连接在供电电源BAT和电量计之间。也就是说,当可控电路1导通时,供电电源BAT提供的电信号可通过可控电路1传输至电量计,从而实现对电量计的激活。在一种实施方式中,可控电路1可以连接至电量计的PACK管脚。具体的,当该PACK管脚接收到电信号时,可激活所述电量计。相反的,当无需对电量计进行激活时,微处理器可以控制可控电路1 关断,从而切断供电电源BAT与电量计之间的,用于激活电量计的路径,以降低功耗。

具体的,可控电路1的导通或关断状态可以基于来自微处理器的控制信号(例如,激活信号、关断信号等)进行控制切换,作为一种举例,可以如图4中所示,可控电路1可以接收来自微处理器的控制信号On_Off,在该信号的控制下导通或者关断。实际应用中,控制信号可以通过高电平信号或者低电平信号实现。

其中,本方案中的连接可以为直接连接也可以为间接连接。以可控电路 1与电量计之间的连接举例,这里的连接可以指,可控电路1与电量计直接连接;或者,可控电路1与电量计间接连接,即两者之间还可以连接有其它元件。

可选的,图2为本申请实施例一提供的另一种电量计激活系统的结构示意图;参考附图2可知,本实施例提供了一种电量计激活系统,该电量计激活系统还用于通过供电端口控制电量计激活,具体的,在任一实施方式的基础上,可控电路1与所述电量计之间设置有供电端口PACK+;

可控电路1的另一端与所述供电端口PACK+连接,所述供电端口PACK+ 与所述电量计连接。

实际应用中,由于电子设备内部配置有不同的模块,考虑到电子设备的使用稳定性,本方案中设置供电端口PACK+,通过该供电端口PACK+可以向连接至该供电端口PACK+的模块供电。作为示例来说,当微处理器检测到需要激活电量计时,可以控制可控电路1导通,相应的,供电电源BAT提供的电信号可以通过导通的可控电路1,供电端口PACK+传输至电量计,从而实现对电量计的激活。

另外,该供电端口还为电子设备的充电端口,即当外部电源连接至供电端口PACK+,能够实现为电子设备,具体可以是为电子设备的供电电源充电。在充电过程中,由于供电端口PACK+连接至电量计,因此还可同时实现对电量计的激活。也就是说,本实施方式,利用电子设备的供电端口PACK+,能够进一步支持在设备充电时对电量计进行激活,并且不依赖于供电电源即可实现。同样可选的,所述供电端口PACK+可以连接至电量计的PACK管脚。具体的,当该PACK管脚接收到电信号时,可激活所述电量计。

进一步的,为了在便捷地实现电量计激活的基础上,保证电量计激活的稳定性和可靠性。可选的,图3为本申请实施例一提供的又一种电量计激活系统的结构示意图;参考附图3可知,在图2所示实施方式的基础上,所述系统还包括:第一二极管D1;

所述第一二极管D1的正极与所述供电电源BAT连接,所述第一二极管 D1的负极与所述第一可控电路1连接。

以实际场景举例来说:在一种实施方式中,可控电路1可以连接至供电端口PACK+,相应的,电量计同样连接至该供电端口PACK+。该实施方式下,除了利用微处理器控制可控电路1导通,由供电电源BAT的供电信号来激活电量计外,还支持在设备充电时,利用供电端口PACK+接收到的供电信号,来实现对电量计的激活。在后一种情形下,由于此时由外部获得供电信号,故为了保证供电电源的安全,设置有第一二极管D1,通过设置第一二极管D1,能够防止充电时的充电电压反灌至供电电源,避免对供电电源造成损伤。

本实施方式,无需增添额外的电子元件,即可支持通过为设备充电来激活电量计,另外,通过供电端口连接电量计能够进一步便于优化电路结构,提高电量计激活的稳定性。

此外,为了降低功耗,在实施例一的基础上,所述微处理器还可以与所述电量计连接;所述微处理器,用于检测所述电量计的激活状态,并在所述电量计被激活后,向所述可控电路1发送关断信号,以控制所述可控电路断开。

以实际场景举例来说:微处理器控制可控电路导通,以激活电量计,同时微处理器可以通过读取电量计来判断电量计是否被成功激活,如果确认电量计已被成功激活,之后微处理器可以控制可控电路关断,以减少功耗。实际应用中,电量计激活需要的时间很短,所以激活的整个过程可以控制的很短。

本实施例提供的电量计激活系统,包括连接在供电电源和电量计之间的可控电路,所述可控电路的控制端与微处理器连接,当微处理器检测到需要激活电量计时,可以控制可控电路导通,以通过供电电源向电量计充电实现对电量计的激活。本方案利用微处理器控制电量计的激活,能够方便及时地实现对电量计的自动激活,无需用户手动操作,并且本方案的电路简单,采用一些常规的元器件,能够有效节省成本。

具体的,本方案中的可控电路1用于在微处理器的控制下导通或关断,其实现方式可以有多种。优选的,图4为本申请实施例二提供的一种电量计激活系统的结构示意图;参考附图4可知,本实施例提供了一种电量计激活系统,该电量计激活系统用于在便捷地实现电量计激活的基础上,保证电量计激活的稳定性和可靠性,具体的,在任一实施例的基础上,可控电路1可以包括:第一可控元件11和第二可控元件12;

第一可控元件11的控制极与第二可控元件12的供电极连接,第一可控元件11的输出极与供电电源BAT连接,第一可控元件11的供电极与电量计连接;

第二可控元件12的控制极与微处理器连接,第二可控元件12的输出极接地,第二可控元件12用于在微处理器发出的激活信号下导通,以联动控制第一可控元件11导通。

以实际场景举例来说:如图中所示,供电状态下的微处理器可以向第二可控元件12发送控制信号On_Off,该控制信号On_Off可以为高电平或低电平信号,以控制第二可控元件12导通或关断,进而联动控制第一可控元件 11导通或关断。

优选的,为了保证第二可控元件12的性能和稳定性,所述系统还可以包括:设置在第一可控元件11的与所述电量计之间的第一电阻R1;

第一电阻R1的一端与第一可控元件11的供电极连接,第一电阻R1的另一端与所述电量计连接。

再优选的,同样为了保证第二可控元件12的性能和稳定性,所述系统还可以包括:第四电阻R4;

第四电阻R4的一端与第二可控元件12的控制极连接,第四电阻R4的另一端与第二可控元件12的输出极连接。

此外,为了保证可控电路的性能和稳定性,还可以设置分压电阻。优选的,所述系统还可以包括:第二电阻R2和第三电阻R3;

第二电阻R2的一端与第一可控元件11的输出极连接,第二电阻R2的另一端与第一可控元件11的控制极连接;

第三电阻R3的一端与第一可控元件11的控制极连接,第三电阻R3的另一端与第二可控元件12的供电极连接。

具体的,第二电阻R2和第三电阻R3为第一可控元件11的分压电阻,以保证第一可控元件11的可靠性和稳定性。

实际应用中,第一可控元件11和第二可控元件12可通过多种可控元件实现,例如,电压控制元件、电流控制元件等。

如图5A所示,在一种实施方式中,第一可控元件11为PMOS管,第二可控元件12为NMOS管;第一可控元件和第二可控元件的控制极为栅极,第一可控元件和第二可控元件的供电极为漏极,第一可控元件和第二可控元件的输出极为源极。

结合前述实施方式进行说明,第一可控元件11为PMOS管Q1,第二可控元件12为NMOS管Q2,相应的,所述NMOS管Q2的栅极与所述微处理器连接,所述NMOS管Q2的源极接地,所述NMOS管Q2的漏极与所述PMOS 管Q1的栅极连接;所述PMOS管Q1的源极与供电电源BAT连接,所述PMOS 管Q1的漏极与电量计连接。

如图5B所示,在另一种实施方式中,第一可控元件11为PNP晶体管,第二可控元件12为NPN晶体管;第一可控元件11和第二可控元件12的控制极为基极,第一可控元件11和第二可控元件12的供电极为集电极,第一可控元件11和第二可控元件12的输出极为发射极。

同样结合前述实施方式进行说明,第一可控元件11为PNP晶体管Q3,第二可控元件12为NPN晶体管Q4,相应的,所述NPN晶体管Q4的基极与微处理器连接,所述NPN晶体管Q4的发射极接地,所述NPN晶体管Q4的集电极与所述PNP晶体管Q3的基极连接;所述PNP晶体管Q3的发射极与供电电源BAT连接,所述PNP晶体管Q3的集电极与电量计连接。

本实施例提供的电量计激活系统中,可控电路包括第一可控元件和第二可控元件,微处理器可控制第二可控元件导通或关断,从而联动控制第一可控元件导通或者关断,以灵活及时地实现对电量计的激活。

为了更好地理解本方案,结合图5A进行示例说明:如图所示,BAT为供电电源,例如电池,PACK+为电池的供电端口(也是充电端口),On_Off表示微处理器控制可控电路1开断的信号,PMOS管Q1是主回路开关管,NMOS 管Q2是控制Q1开断的MOS管,D1是防止充电电压反灌的二极管,R2、 R3是Q1的栅极分压电阻,R4是Q2的栅极对地电阻,用以稳定Q2栅极电压。

当需要激活电量计时,例如,保护板焊接电芯的时候或电池由休眠状态恢复到工作状态时,微处理器可以控制On_Off为高电平,以导通可控电路1,进行电量计激活,然后微处理器通过读取电量计判断电量计是否被成功激活,如果确认电量计激活成功之后,微处理器可以控制On_Off为低电平或高阻态,从而关闭Q1,以减少线路功耗。实际应用中,可以将电量计激活的操作放在较靠前的时序执行。这里的第一二极管D1起到一个防止PACK+电压反灌到 BAT的作用,同时电阻R1也会进一步限制回路的电流,以防止过大的电流烧坏回路走线。

当供电电源需要进入休眠状态时,如果On_Off一直为高电平,则供电电源电池相当于一直处于激活状态,这就会导致电池无法进入休眠状态,故此时微处理器可以控制On_Off为低电平或高阻态。

前述附图中并未示出电量计的线路连接,实际应用中,电量计的触发管脚可以连接至供电端口PACK+,相应的,供电端口PACK+接收到的供电信号也就相当于接通到电量计的触发管脚,从而激活电量计。作为一种示例,图6为电量计的管脚连接示意图。其中,PACK管脚即为电量计的触发管脚,通过向该管脚输入供电信号,即可实现对电量计的激活。

本申请实施例三提供一种电子设备,该电子设备包括:微处理器、电量计以及如前述任一实施方式所述的电量计激活系统。

可选的,该电子设备可以为无人机。

本实施例提供的电子设备中,电量计激活系统包括连接在供电电源和电量计之间的可控电路,所述可控电路的控制端与微处理器连接,当微处理器检测到需要激活电量计时,可以控制可控电路导通,以通过供电电源向电量计充电实现对电量计的激活。本方案利用微处理器控制电量计的激活,能够方便及时地实现对电量计的自动激活,无需用户手动操作,并且本方案的电路简单,采用一些常规的元器件,能够有效节省成本。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1