控制系统补偿方法、装置、介质及智能设备与流程

文档序号:18867807发布日期:2019-10-14 18:46阅读:149来源:国知局
控制系统补偿方法、装置、介质及智能设备与流程

本发明涉及机械臂的控制技术领域,特别是涉及一种控制系统补偿方法、系统、介质及智能设备。



背景技术:

在实际工程应用中,特别是控制系统,各种系统部件存在着诸多非线性因素和不确定干扰。在其运行过程中,由于非线性因素和不确定干扰产生的不良影响,限制了系统的稳定性能,导致系统不确定,降低了控制精度,制约了高精尖技术的发展

众所周知的,控制系统是指由控制主体、控制客体和控制媒体组成的具有自身目标和功能的管理系统。随着工业的飞速发展,高精尖产业也迅速发展,高精尖技术产业对控制系统的要求也不断提升。因此,针对控制系统,特别是高精尖领域中的控制系统,为准确地动态补偿系统中的非线性因素和不确定干扰而进行的研究尤为重要。

现有技术针对控制系统的补偿多为精确模型,而在实际工程应用中,控制系统必定存在非线性因素和不确定干扰。若未采取有效的方法处理非线性因素和不确定干扰,将很大程度地降低系统的稳定性和控制精度。同时,采用神经网络控制算法会产生逼近误差,这将导致系统不能够快速收敛,并增加计算量,给硬件带来负担。在大多数已实现的控制方法中,随着系统阶数的增加,控制效果难以保证,这难以满足目前高精尖领域的要求。



技术实现要素:

为了解决上述问题,本发明的目的是提供一种能够对不确定性进行实时跟踪与补偿,保证控制系统稳定性的控制系统补偿方法、系统、介质及智能设备。

根据本发明提供的控制系统补偿方法,包括:

获取待补偿系统的非线性参数及不确定干扰参数,并根据所述非线性参数及不确定干扰参数确定待补偿系统的系统模型;

根据该系统模型的运行结果确定是否对所述待补偿系统进行动态补偿;

若是,则根据所述运行结果与预设标准对该待补偿系统进行动态补偿,并将补偿后的运行结果反馈至补偿控制器。

根据本发明提供的控制系统补偿方法,首先获取待补偿系统的非线性参数及不确定干扰参数,并根据所述非线性参数及不确定干扰参数确定待补偿系统的系统模型,根据该系统模型的运行结果确定是否对所述待补偿系统进行动态补偿;若是,则根据所述运行结果与预设标准对该待补偿系统进行动态补偿,并将补偿后的运行结果反馈至补偿控制器。本发明提供的控制系统补偿方法,通过对非线性因素和不确定干扰进行动态补偿,从而提高了系统的稳定性和控制精度;同时也能够解决现有神经网络控制算法所产生的逼近误差,而导致的系统不能够快速收敛,并增加计算量,给硬件带来负担的问题,满足了实际应用需求。

另外,根据本发明上述的控制系统补偿方法,还可以具有如下附加的技术特征:

进一步地,所述待补偿系统的系统模型为:

其中,xi为系统的状态变量,u为系统的输入,gi为非线性参数,di为不确定干扰参数。

进一步地,根据该系统模型的运行结果确定是否对所述待补偿系统进行动态补偿的步骤包括:

根据所述不确定干扰参数及神经网络模型构建时产生的逼近误差,构造低阶扩张状态观测器;

通过所述扩张状态观测器对待补偿系统的不确定干扰进行实时追踪,并将所述追踪结果生成相应的追踪效果图;

计算所述追踪效果图与所述标准效果图的匹配度最高的最佳匹配子图;

根据所述最佳匹配子图与标准效果图的相关度确定是否对所述待补偿系统进行动态补偿。

进一步地,根据所述不确定干扰参数及神经网络模型构建时产生的逼近误差,构造低阶扩张状态观测器的步骤包括:

将所述不确定干扰参数导入低阶扩张状态观测器,以得到干扰估计值,其中,所述低阶扩张状态观测器的模型为:

所述干扰估计值的公式为:

进一步地,根据所述运行结果与预设标准对该待补偿系统进行动态补偿的步骤包括:

根据所述非线性参数确定神经网络控制模型;

根据所述神经网络控制模型计算虚拟控制模型;

根据所述虚拟控制模型计算滑模控制模型;

确定所述运行结果与预设标准的线性度,并通过所述滑模控制模型对该待补偿系统进行动态补偿。

进一步地,根据所述非线性参数确定神经网络控制模型的公式为:

进一步地,所述虚拟控制模型为:

所述滑模控制模型为:

本发明的另一实施例提出一种控制系统补偿装置,解决现有对控制系统的补偿多为精确模型,而在实际工程应用中,控制系统必定存在非线性因素和不确定干扰,从而很大程度地降低系统的稳定性和控制精度的问题,提高了用户控制体验的满意度。

根据本发明实施例的控制系统补偿装置,包括:

获取模块,用于获取待补偿系统的非线性参数及不确定干扰参数,并根据所述非线性参数及不确定干扰参数确定待补偿系统的系统模型;

判断模块,用于根据该系统模型的运行结果确定是否对所述待补偿系统进行动态补偿;

补偿模块,用于根据所述运行结果与预设标准对该待补偿系统进行动态补偿,并将补偿后的运行结果反馈至补偿控制器。

本发明的另一个实施例还提出一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤。

本发明还提出一种智能设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如上所述的控制系统补偿方法。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施例了解到。

附图说明

图1是本发明第一实施例提出的控制系统补偿方法的流程图;

图2是图1中步骤s102的具体流程图;

图3是图1的具体实施例的追踪效果示意图;

图4是本发明第二实施例提出的控制系统补偿装置的结构框图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

请参阅图1,本发明第一实施例提出的一种控制系统补偿方法,其中,包括步骤s101~s103:

步骤s101,获取待补偿系统的非线性参数及不确定干扰参数,并根据所述非线性参数及不确定干扰参数确定待补偿系统的系统模型。

本实施例中,以数据智能设备为例进行说明,但需要了解的是,本发明实施例并不限于此,本发明实施例的方法可以应用在任何智能设备中,即任何可进行系统补偿的电子设备中。具体的,现有技术中,针对的系统多为精确模型,而在实际工程应用中,控制系统必定存在非线性因素和不确定干扰。若未采取有效的方法处理非线性因素和不确定干扰,将很大程度地降低系统的稳定性和控制精度。同时,采用神经网络控制算法会产生逼近误差,这将导致系统不能够快速收敛,并增加计算量,给硬件带来负担。

具体实施时,判断待补偿控制系统的系统类型,根据待补偿控制系统的系统类型确定待补偿系统的非线性参数及不确定干扰参数,并根据所述非线性参数及不确定干扰参数确定待补偿系统的系统模型,通过对待补偿系统进行系统模型的建立从而方便根据该系统模型的补偿效果对实际的待补偿的控制系统进行动态补偿,从而大大地提高了对待补偿控制系统的补偿效果及补偿精度。

进一步地,本实施例中所述待补偿系统的系统模型为:

其中,xi为系统的状态变量,u为系统的输入,gi为非线性参数,di为不确定干扰参数。

在本实施例中,通过将待补偿系统本身的状态及干扰因素考虑在内,从而将系统的输入u、非线性参数gi及不确定干扰参数di与系统的状态变量xi相关联,进而可以准确的通过系统模型的运行状态及补偿效果对待补偿的系统进行动态的补偿,节省了资源,且提高了补偿的效果及精度,避免了由于非线性因素和不确定干扰产生的不良影响,限制了系统的稳定性能,导致系统不确定,降低了控制精度,制约了高精尖技术的发展。

步骤s102,根据该系统模型的运行结果确定是否对所述待补偿系统进行动态补偿。

如上所述,通过针对该待补偿的控制系统建立相应的系统模型,以便于根据该系统模型的运行结果判断是否对该待补偿控制系统进行动态补偿,可以理解的,该系统模型对待补偿控制系统的运行环境、运行参数及干扰因素是实时获取的,从而提高对待补偿控制系统进行补偿的可靠性准确性及及时性。

请参阅图2,根据该系统模型的运行结果确定是否对所述待补偿系统进行动态补偿的方法包括如下步骤:

步骤s1021,根据所述不确定干扰参数及神经网络模型构建时产生的逼近误差,构造低阶扩张状态观测器。

如上所述,为提高根据该系统模型的运行结果对所述待补偿系统进行动态补偿的可靠性及可追踪性,因此需要根据所述不确定干扰参数及神经网络模型构建时产生的逼近误差,构造低阶扩张状态观测器,其中该低阶扩张状态观测器的模型为:

进一步地,为得到系统对不确定干扰进行跟踪的干扰结果,因此需将所述不确定干扰参数导入低阶扩张状态观测器,以得到干扰估计值,其中,所述干扰估计值的公式为:

步骤s1022,通过所述扩张状态观测器对待补偿系统的不确定干扰进行实时追踪,并将所述追踪结果生成相应的追踪效果图。

如上所述,为准确得出不确定干扰对待补偿系统的长期或阶段性的干扰状态,因此需通过所述扩张状态观测器对待补偿系统的不确定干扰进行实时追踪,并将所述追踪结果生成相应的追踪效果图,从而便于直观的得出不确定干扰对待补偿系统的干扰结果及干扰规律。

步骤s1023,计算所述追踪效果图与所述标准效果图的匹配度最高的最佳匹配子图。

如上所述,具体实施时,对所述追踪效果图进行卷积计算以得到一匹配矩阵,该匹配矩阵的物理意义指的是追踪效果图相对于标准效果图的匹配度关系的矩阵;然后计算该匹配矩阵的值最大时所对应的坐标,并根据该坐标在所述追踪效果图中确定匹配度最高的匹配子图。

步骤s1024,根据所述最佳匹配子图与标准效果图的相关度确定是否对所述待补偿系统进行动态补偿。

如上所述,通过根据所述最佳匹配子图与标准效果图的相关度是否小于预设相关度90%,来确定是否对所述带补偿系统进行补偿,在本发明其他实施例中,所述最佳匹配子图与标准效果图的相关度还可根据实际需求进行调整,在此不作限制。

步骤s103,根据所述运行结果与预设标准对该待补偿系统进行动态补偿,并将补偿后的运行结果反馈至补偿控制器。

如上所述,相应的补偿设备根据所述系统模型的运行结果及预设标准对该待补偿系统进行动态补偿,并将补偿后的运行结果反馈至补偿控制器,以便于所述补偿控制器根据补偿后的运行结果进行分析、预警与补偿调整。

请参阅图3,根据所述运行结果与预设标准对该待补偿系统进行动态补偿的步骤包括:

根据所述非线性参数确定神经网络控制模型,其中,该神经网络控制模型为:

根据所述神经网络控制模型计算虚拟控制模型,其中,计算步骤包括:

根据所述虚拟控制模型计算滑模控制模型,其中滑模控制模型为;

确定所述运行结果与预设标准的线性度,并通过所述滑模控制模型对该待补偿系统进行动态补偿。

可以理解的,通过所述运行结果与预设标准的线性度对该待补偿系统进行动态补偿,避免了由于非线性因素和不确定干扰产生的不良影响,限制了系统的稳定性能,导致系统不确定,降低了控制精度,制约了高精尖技术的发展。具体实施时可将运行结果的效果图与预设标准的效果图划分为若干区域,以进行线性度的判断。

根据本发明提供的控制系统补偿方法,首先获取待补偿系统的非线性参数及不确定干扰参数,并根据所述非线性参数及不确定干扰参数确定待补偿系统的系统模型,根据该系统模型的运行结果确定是否对所述待补偿系统进行动态补偿;若是,则根据所述运行结果与预设标准对该待补偿系统进行动态补偿,并将补偿后的运行结果反馈至补偿控制器。本发明提供的控制系统补偿方法,通过对非线性因素和不确定干扰进行动态补偿,从而提高了系统的稳定性和控制精度;同时也能够解决现有神经网络控制算法所产生的逼近误差,而导致的系统不能够快速收敛,并增加计算量,给硬件带来负担的问题,满足了实际应用需求。

请参阅图3,作为一个具体的实施例,机械臂在实际的工程应用中具有极大的运用价值,同时所有的控制系统都能够转化为二阶系统进行分析。现采用单关节机械臂二阶系统验证本发明所提出的系统非线性因素和不确定干扰动态补偿控制方法的效果。系统模型如下:

其中,j是转动惯量,u是系统输入,g1和g2是未知随机干扰项,f1和f2是外部干扰,x1是单关节机械臂的角度,x2是单关节机械臂的角速度。

确定扩张状态观测器模型eso-1,eso-2,干扰估计值神经网络控制器虚拟控制器α1和u,滑模控制器s。

eso-1:

eso-2:

获取单关节机械臂角度x1及其期望值x1r的跟踪效果图(a)、单关节机械臂角速度x2的跟踪效果图(b)及其期望值x2r及扩张状态观测器对系统不确定干扰的跟踪效果图(c),通过跟踪效果图对干扰信号进行有效跟踪,进而对系统进行动态补偿,有效地保证了系统的稳定性提升系统性能和控制精度。

请参阅图4,基于同一发明构思,本发明第二实施例提供的控制系统补偿装置,包括:

获取模块10,用于获取待补偿系统的非线性参数及不确定干扰参数,并根据所述非线性参数及不确定干扰参数确定待补偿系统的系统模型。

其中,所述待补偿系统的系统模型为:

其中,xi为系统的状态变量,u为系统的输入,gi为非线性参数,di为不确定干扰参数。

判断模块20,用于根据该系统模型的运行结果确定是否对所述待补偿系统进行动态补偿。

本实施例中,所述判断模块20包括:

构造单元21,用于根据所述不确定干扰参数及神经网络模型构建时产生的逼近误差,构造低阶扩张状态观测器。

进一步地,根据所述不确定干扰参数及神经网络模型构建时产生的逼近误差,构造低阶扩张状态观测器的步骤为将所述不确定干扰参数导入低阶扩张状态观测器,以得到干扰估计值。其中,所述低阶扩张状态观测器的模型为:

所述干扰估计值的公式为:

生成单元22,用于通过所述扩张状态观测器对待补偿系统的不确定干扰进行实时追踪,并将所述追踪结果生成相应的追踪效果图。

计算单元23,用于计算所述追踪效果图与所述标准效果图的匹配度最高的最佳匹配子图。

确定单元24,用于根据所述最佳匹配子图与标准效果图的相关度确定是否对所述待补偿系统进行动态补偿。

补偿模块30,用于根据所述运行结果与预设标准对该待补偿系统进行动态补偿,并将补偿后的运行结果反馈至补偿控制器。

其中,根据所述非线性参数确定神经网络控制模型的公式为:

所述虚拟控制模型为:

所述滑模控制模型为:

根据本发明提供的控制系统补偿装置,首先获取待补偿系统的非线性参数及不确定干扰参数,并根据所述非线性参数及不确定干扰参数确定待补偿系统的系统模型,根据该系统模型的运行结果确定是否对所述待补偿系统进行动态补偿;若是,则根据所述运行结果与预设标准对该待补偿系统进行动态补偿,并将补偿后的运行结果反馈至补偿控制器。本发明提供的控制系统补偿方法,通过对非线性因素和不确定干扰进行动态补偿,从而提高了系统的稳定性和控制精度;同时也能够解决现有神经网络控制算法所产生的逼近误差,而导致的系统不能够快速收敛,并增加计算量,给硬件带来负担的问题,满足了实际应用需求。

本发明实施例提出的控制系统补偿装置的技术特征和技术效果与本发明实施例提出的方法相同,在此不予赘述。

此外,本发明的实施例还提出一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤。

此外,本发明的实施例还提出一种智能设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现上述方法的步骤。

在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。

计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(ram),只读存储器(rom),可擦除可编辑只读存储器(eprom或闪速存储器),光纤装置,以及便携式光盘只读存储器(cdrom)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。

应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(pga),现场可编程门阵列(fpga)等。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1