基于多无人机协同博弈对抗的控制系统的制作方法

文档序号:20943910发布日期:2020-06-02 19:46阅读:1034来源:国知局
基于多无人机协同博弈对抗的控制系统的制作方法

本发明属于多无人机博弈对抗领域,具体涉及一种基于多无人机协同博弈对抗的控制系统。



背景技术:

随着无人机面临的任务更加复杂化和多样化,单架无人机越来越难以满足需求,多无人机集群技术成为无人机应用领域的关键技术。尤其在空战博弈对抗领域,多无人机协同博弈对抗能充分利用各无人机的侦察、打击和评估能力,提高无人机系统整体作战效能和任务执行效率,因而成为未来空战对抗的趋势。为了模拟多无人机协同博弈对抗过程,实现对战场环境和武器装备的交互式操作,从而验证多机空战战术对抗的效果,需要构建基于多无人机协同博弈对抗的控制系统。

多无人机协同博弈对抗是指两架或两架以上的无人机相互配合完成指定对抗任务。在无人机博弈对抗研究初期,由于受近距空战影响,无人机博弈对抗研究以1v1为主。但是,在多机协同博弈对抗中,存在着诸如环境信息快时变、通信传输不稳定、多架无人机防碰撞、多架无人机信息融合与任务分配、无人机群协同动作决策等多个问题,因此,常规的单机博弈对抗系统难以直接应用于多机博弈对抗研究。



技术实现要素:

为了解决现有技术中的上述问题,即为了解决现有1v1无人机博弈对抗系统难以满足多无人机协同博弈对抗研究需求的问题,本发明第一方面,提出了一种基于多无人机协同博弈对抗的控制系统,该系统包括管理模块以及博弈双方的无人机编队模块、态势评估模块、决策模块、协同任务分配模块:

所述管理模块,配置为存储所述无人机编队模块发送的第一信息并发送至所述态势评估模块;

所述无人机编队模块,配置为当巡航过程中发现对抗方的无人机时,获取当前方、对抗方无人机编队中的各无人机的状态信息,作为第一信息并发送至所述管理模块;还配置为控制当前方各无人机执行所述协同任务分配模块发送的控制指令;

所述态势评估模块,配置为基于所述第一信息,通过预设多种预设类别的评估方法获取当前方各无人机的态势评估信息;

所述决策模块,配置为基于获取的博弈双方各无人机的数量,统计各方无人机所有的机动策略,并结合所述态势评估信息,获取当前方各无人机相对于对抗方各无人机的最优态势优势值,构建当前方无人机编队相对于对抗方无人机编队的态势矩阵;基于所述态势矩阵,通过预设的策略选取方法获取当前方的对抗策略;

所述协同任务分配模块,配置为根据所述态势矩阵,获取当前方无人机所应对的对抗目标,并结合所述对抗策略、所述最优态势评估值,生成当前方各无人机的控制指令,发送所述无人机编队模块。

在一些优选的实施方式中,该系统还包括视景显示模块;

所述视景显示模块,配置为获取所述第一状态信息及博弈对抗图像进行输出显示。

在一些优选的实施方式中,所述管理模块,还配置为进行系统设置和博弈对抗性能分析;

所述系统设置包括仿真调度管理、博弈双方多无人机系统初始化和离散事件触发管理;其中,所述仿真调度管理,包括系统仿真时长、步长、仿真开始时间、仿真结束时间的设置管理;所述博弈双方多无人机系统初始化,配置为对博弈双方多无人机的飞行状态进行初始设置;所述离散事件触发管理,配置为进行人工离散事件设置,以中止多无人机双方的博弈进程;

所述博弈对抗性能分析包括胜率结果分析、过程趋势分析和对抗时间分析;其中,所述胜率结果分析,配置为以图表形式显示博弈双方胜率;所述过程趋势分析,配置为以曲线形式显示博弈双方态势变化趋势;所述对抗时间分析,配置为以图表形式显示双方博弈时间。

在一些优选的实施方式中,所述状态信息包括无人机的位置、速度、姿态角和控制输入信息;所述控制输入信息包括无人机的纵向过载、法向过载和滚转角。

在一些优选的实施方式中,所述态势评估信息包括机动能力评估信息和视野能力评估信息;所述视野能力评估信息包括距离评估值、方位角评估值和进入角评估值;所述机动能力评估信息包括能量评估值和空战性能评估值。

在一些优选的实施方式中,所述距离评估值其计算方法为:

其中,tid为距离评估值,di、drmax、dmmax、dmmin、dmkmax、dmkmin分别表示当前方第i架无人机与对抗方任一无人机的相对距离、火控雷达的最大搜索距离、空空导弹的最大攻击距离、空空导弹的最小攻击距离、空空导弹的最大不可逃逸距离、空空导弹的最小不可逃逸距离。

在一些优选的实施方式中,所述方位角评估值其计算方法为:

其中,φi、φrmax、φmmax、φmkmax分别表示当前方第i架无人机与对抗方任一无人机的方位角、火控雷达的最大搜索方位角、空空导弹的最大搜索方位角、空空导弹的最大不可逃逸角,tiφ为方位角评估值。

在一些优选的实施方式中,所述进入角评估值其计算方法为:

其中,pi和分别表示当前方第i架无人机与对抗方任一无人机的进入角和进入角阈值,tip为进入角评估值。

在一些优选的实施方式中,所述能量评估值其计算方法为:

其中,表示第i架无人机的能量值,hi为第i架无人机的飞行高度,vi为第i架无人机的飞行速度,g为重力加速度系数,et为对抗方任一无人机的能量值,tie为第i架无人机的能量评估值。

在一些优选的实施方式中,所述空战性能评估值其计算方法为:

其中,bi、ai、di分别表示第i架无人机的机动性参数、火力衡量参数和探测能力衡量参数,分别表示第i架无人机的操纵效能系数、生存力系数、航程系数,tic为第i架无人机的空战性能评估值。

在一些优选的实施方式中,所述决策模块中“获取当前方各无人机相对于对抗方各无人机的最优态势优势值,构建当前方无人机编队相对于对抗方无人机编队的态势矩阵”,其方法为:

基于当前方、对抗方各无人机的机动策略,结合所述态势评估信息,构建当前方各无人机相对于对抗方各无人机的第一态势矩阵;所述机动策略包括无人机横向机动策略和纵向机动策略,其中,横向机动策略决定无人机航迹偏角变化值,纵向机动策略决定无人机高度变化值;

基于所述第一态势矩阵中的态势优势值,通过min-max原则得到当前方各无人机相对于对抗方各无人机的最优态势优势值,并构建当前方无人机编队相对于对抗方无人机编队的态势矩阵。

在一些优选的实施方式中,所述决策模块中“基于所述态势矩阵,通过预设的策略选取方法获取当前方的对抗策略”,其方法为:

依次选取所述态势矩阵中最大值,并删除所述态势矩阵中最大值对应行和列的所有元素;

对选取的最大值进行累加,得到当前方无人机编队相对于对抗方无人机编队的整体态势优势值;

基于所述整体态势优势值,将该值与设定的最小最大态势优势阈值进行比对,获取当前方无人机编队的对抗策略。

在一些优选的实施方式中,所述协同任务分配模块中“根据所述态势矩阵,获取当前方无人机所应对的对抗目标”,其方法为:根据所述态势矩阵依次选取的最大值对应的行列坐标,获取当前方无人机所应对的对抗方的无人机。

本发明的有益效果:

本发明为多无人机协同博弈对抗的设计、验证与评估提供了简单、快速的仿真环境。本发明针对不同的空战场景与任务,通过分析敌我双方各无人机的状态信息,评估当前方各无人机相对于对抗方各无人机的态势信息,并结合敌我双方各无人机可能出现的机动策略组合,获取最优的态势优势值,得到当前方无人机编队的对抗策略。基于对抗策略,分配各无人机的任务指令,并通过显示模块实现战术执行过程的可视化,为多无人机协同博弈对抗的设计、验证与评估提供了简单、快速的仿真环境。

同时,本发明的博弈对抗控制系统采用模块化设计思路,模型、感知、决策与分配模块独立设计,可扩展性强。针对不同的无人机模型、感知算法、决策算法以及分配算法,无需对系统框架进行大幅改动,只需在保证输入输出数据格式一致的条件下替换相应模块即可,提高了多无人机协同空战战术的仿真效率。

附图说明

通过阅读参照以下附图所做的对非限制性实施例所做的详细描述,本申请的其他特征、目的和优点将会变得更明显。

图1是本发明一种实施例的基于多无人机协同博弈对抗的控制系统的框架示意图;

图2是本发明一种实施例的基于多无人机协同博弈对抗的控制系统的视景显示模块软件界面的示意图;

图3是本发明一种实施例的基于多无人机协同博弈对抗的控制系统的控制流程示意图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。

本发明的一种基于多无人机协同博弈对抗的控制系统,包括以下模块:管理模块以及博弈双方的无人机编队模块、态势评估模块、决策模块、协同任务分配模块:

所述管理模块,配置为存储所述无人机编队模块发送的第一信息并发送至所述态势评估模块;

所述无人机编队模块,配置为当巡航过程中发现对抗方的无人机时,获取当前方、对抗方无人机编队中的各无人机的状态信息,作为第一信息并发送至所述管理模块;还配置为控制当前方各无人机执行所述协同任务分配模块发送的控制指令;

所述态势评估模块,配置为基于所述第一信息,通过预设多种预设类别的评估方法获取当前方各无人机的态势评估信息;

所述决策模块,配置为基于获取的博弈双方各无人机的数量,统计各方无人机所有的机动策略,并结合所述态势评估信息,获取当前方各无人机相对于对抗方各无人机的最优态势优势值,构建当前方无人机编队相对于对抗方无人机编队的态势矩阵;基于所述态势矩阵,通过预设的策略选取方法获取当前方的对抗策略;

所述协同任务分配模块,配置为根据所述态势矩阵,获取当前方无人机所应对的对抗目标,并结合所述对抗策略、所述最优态势评估值,生成当前方各无人机的控制指令,发送所述无人机编队模块。

为了更清晰地对本发明基于多无人机协同博弈对抗的控制系统进行说明,下面结合附图对本发明系统一种实施例中各功能模块进行展开详述。

如图1所示,本发明系统包括视景显示模块、管理模块以及博弈双方的无人机编队模块、态势评估模块、决策模块、协同任务分配模块。由于博弈双方的无人机编队模块、态势评估模块、决策模块及协同任务分配模块功能一致,本实施例中,任选一方进行描述。图1中将博弈双方定义为红方、蓝方,无人机数量为n。

所述管理模块,配置为存储所述无人机编队模块发送的第一信息并发送至所述态势评估模块。

在本实施例中,管理模块,配置为获取博弈双方各无人机的状态信息进行存储并发送至所述态势评估模块;还配置为进行系统设置和博弈对抗性能分析;

其中,系统设置包括仿真调度管理、博弈双方多无人机系统初始化和离散事件触发管理;仿真调度管理,包括系统仿真时长、步长、仿真开始时间、仿真结束时间的设置管理;博弈双方多无人机系统初始化,配置为对博弈双方多无人机的飞行状态进行初始设置;所述离散事件触发管理,配置为进行人工离散事件设置,以中止多无人机双方的博弈进程

博弈对抗性能分析包括胜率结果分析、过程趋势分析和对抗时间分析。胜率结果分析,配置为以图表形式显示博弈双方胜率;过程趋势分析,配置为以曲线形式显示博弈双方态势变化趋势;对抗时间分析,配置为以图表形式显示双方博弈时间。

所述无人机编队模块,配置为当巡航过程中发现对抗方的无人机时,获取当前方、对抗方无人机编队中的各无人机的状态信息,作为第一信息并发送至所述管理模块;还配置为控制当前方各无人机执行所述协同任务分配模块发送的控制指令。

在本实施例中,无人机编队模块进一步包括各无人机的动力学与运动学模型、飞行控制系统、探测系统和导弹模型。其中,无人机动力学与运动学模型如式(1)所示:

其中,xi、yi、zi为第i架无人机位置信息,vi为飞行速度,γi、ψi分别为航迹倾角和航迹偏角,nix、niz、φi分别代表纵向过载、法向过载和滚转角。

飞行控制系统包括速度通道控制器、高度通道控制器、航迹偏角控制器。具体如下所示:

首先,选择虚拟控制量,如式(2)所示:

其中,ui1为速度通道控制量,ui2为高度通道控制量,ui3为航迹偏角控制量。

其中,ui1的计算过程如公式(3)所示:

其中,kiv>0为速度控制器参数,eiv=vi-vic,vic为第i架无人机的飞行速度指令,g为重力加速度系数。

ui2的计算过程如公式(4)(5)所示:

其中,kiz,kiγ>0为高度控制器参数,γic表示第i架无人机的飞行航迹倾角指令,eiz=zi-zic,eiγ=γi-γic,zic为第i架无人机的飞行高度指令。

ui3的计算过程如公式(6)所示:

其中,kiψ>0为航迹偏角控制器参数,eiψ=ψi-ψic,ψic为第i架无人机的飞行航迹偏角指令。

基于ui1、ui2、ui3对虚拟控制量进行解耦,其解耦得到的结如式(7)所示:

探测系统模型由火控雷达的最大搜索距离、火控雷达的最大搜索方位角、空空导弹的最大攻击距离、空空导弹的最小攻击距离、空空导弹的最大搜索方位角、最大不可逃逸距离、空空导弹的最小不可逃逸距离和空空导弹的最大不可逃逸角构成。

导弹模型包括导弹动力学与运动学模型和制导模型,其中,导弹动力学与运动学模型如公式(8)所示:

其中,为第j架导弹位置信息,为第j架导弹的飞行速度、弹道倾角和弹道偏角,分别代表导弹三个轴向的过载。

制导模型如公式(9)所示:

其中,为第j架导弹速度矢量方向的变化率,qj为视线角速率,k为导引系数。

在本实施例中,无人机的状态信息包括:无人机的位置、速度、姿态角和控制输入信息;控制输入信息包括无人机的纵向过载、法向过载和滚转角。

所述态势评估模块,配置为基于所述第一信息,通过预设多种预设类别的评估方法获取当前方各无人机的态势评估信息。

在本实施例中,基于博弈双方多无人机的状态信息,提取影响对抗能力的双方要素,评估当前方态势。其中态势评估信息包括机动能力评估信息和视野能力评估信息;视野能力评估信息包括距离评估值、方位角评估值和进入角评估值。其中,距离评估值其计算方法如式(10)所示:

其中,tid为距离评估值,di、drmax、dmmax、dmmin、dmkmax、dmkmin分别表示当前方第i架无人机与对抗方任一无人机的相对距离、火控雷达的最大搜索距离、空空导弹的最大攻击距离、空空导弹的最小攻击距离、空空导弹的最大不可逃逸距离、空空导弹的最小不可逃逸距离。

方位角评估值其计算方法如式(11)所示:

其中,φi、φrmax、φmmax、φmkmax分别表示当前方第i架无人机与对抗方任一无人机的方位角、火控雷达的最大搜索方位角、空空导弹的最大搜索方位角、空空导弹的最大不可逃逸角,tiφ为方位角评估值。

进入角评估值其计算方法如式(12)所示:

其中,pi和分别表示当前方第i架无人机与对抗方任一无人机的进入角和进入角阈值,tip为进入角评估值。

机动能力评估信息包括能量评估值和空战性能评估值。

其中,能量评估值其计算方法如式(13)所示:

其中,表示第i架无人机的能量值,hi为第i架无人机的飞行高度,vi为第i架无人机的飞行速度,g为重力加速度系数,et为对抗方任一无人机的能量值,tie为第i架无人机的能量评估值。

空战性能评估值其计算方法如式(14)所示:

其中,bi、ai、di分别表示第i架无人机的机动性参数、火力衡量参数和探测能力衡量参数,分别表示第i架无人机的操纵效能系数、生存力系数、航程系数,tic为第i架无人机的空战性能评估值。

所述决策模块,配置为基于获取的博弈双方各无人机的数量,统计各方无人机所有的机动策略,并结合所述态势评估信息,获取当前方各无人机相对于对抗方各无人机的最优态势优势值,构建当前方无人机编队相对于对抗方无人机编队的态势矩阵;基于所述态势矩阵,通过预设的策略选取方法获取当前方的对抗策略。

在本实施例中,基于态势评估信息决策对抗策略,生成本方多无人机系统的总任务指令。具体处理如下:

参与博弈对抗的当前方和对抗方无人机数量分别为n和m,其中,当前方每架无人机有na种机动策略(机动策略分为无人机横向机动策略和纵向机动策略,其中,横向机动策略决定无人机航迹偏角变化值,纵向机动策略决定无人机高度变化值),对抗方每架无人机有ma种机动策略,构造当前方第i架无人机相对于对抗方第j架无人机的态势矩阵sij,如式(15)所示:

其中,为对抗方第j架无人机执行第b种机动策略,当前方第i架无人机选择第a种机动策略与之进行对抗时,当前方第i架无人机的态势优势值。

基于sij,根据min-max原则(即获取第一态势矩阵中每一行的最小值,然后在得到的各行的最小值里取最大值),可以得出当前方第i架无人机相对于对抗方第j架无人机的最优态势优势值sij(o),并构建当前方无人机编队相对于对抗方无人机编队的态势矩阵s,如式(16)所示:

基于态势矩阵s,决策当前方无人机编队的对抗策略,即本方多无人机系统的总任务指令。在本发明实施例中,选取态势矩阵s最大值(即最大元素值)记为st1,然后去掉st1所在行和列的元素,再取态势矩阵s剩余最大元素值记为st2,依此类推,得到st3、…、stn,n为自然数,表示最大元素值的数量,构建态势优势值集合,并进行求和,得到当前方无人机编队相对于对抗方无人机编队的整体态势优势值st,如式(17)所示:

时,本方无人机编队的对抗策略为迎头攻击战术;当时,本方无人机编队的对抗策略为诱饵战术;当st<s时,本方无人机编队的对抗策略为防御分合战术。其中,s代表无人机编队整体态势优势值的两个阈值,当整体态势优势值大于时,表示该无人机编队态势占优,当整体态势优势值小于s时,表示该无人机编队态势处劣。

所述协同任务分配模块,配置为根据所述态势矩阵,获取当前方无人机所应对的对抗目标,并结合所述对抗策略、所述最优态势评估值,生成当前方各无人机的控制指令,发送所述无人机编队模块。

在本实施例中,根据sti所在态势矩阵s中的行数i和列数j,(表明当前方第i架无人机对对抗方第j架无人机的优势最大),得出当前方第i架无人机分配应对对抗方第j架无人机,再根据当前方第i架无人机相对于对抗方第j架无人机的态势矩阵sij,得到当前方第i架无人机的机动策略集合。结合对抗策略,选择最优机动策略,生成无人机的任务指令,发送至所述无人机编队模块执行相应任务。

所述视景显示模块,配置为获取所述第一状态信息及博弈对抗图像进行输出显示。

在本实施例中,实时输出多无人机协同博弈对抗图像及各无人机的状态信息。如图2所示:id为无人机的编号,longitude、latitude为经纬度,courseangle为航向角,height为飞行高度,velocity为飞行速度,acc为飞行加速度,“显示路径”和“关闭路径”按钮可控制显示与否无人机飞行轨迹,“保存轨迹”和“导入轨迹”按钮可将无人机飞行轨迹保存至指定目录或从指定目录导入无人机飞行轨迹文件,“读任务”和“写任务”按钮用于读写无人机编队的任务指令,“二维模拟动画”按钮用于动态显示双方无人机编队的博弈对抗过程,“添加航点”和“删除航点”用于手动设置无人机的位置信息,“开始”、“暂停”、“0.5倍速”、“2倍速”和“4倍速”按钮用于设置仿真软件的运行参数信息。

另外,本发明提出的基于多无人机协同博弈对抗的控制系统的执行流程如图3所示:系统初始化后,本方无人机编队以固定队形执行巡航任务,当本方编队发现对抗方目标时,开始执行协同博弈对抗任务,然后针对双方无人机编队的状态信息进行态势评估,并基于态势评估信息决策本方编队的对抗策略,进而生成编队内单架无人机任务指令,当对抗方无人机处于当前方导弹不可逃逸区时,启动当前方导弹系统,根据导弹模型发射导弹对敌打击。

需要说明的是,上述实施例提供的基于多无人机协同博弈对抗的控制系统,仅以上述各功能模块的划分进行举例说明,在实际应用中,可以根据需要而将上述功能分配由不同的功能模块来完成,即将本发明实施例中的模块或者步骤再分解或者组合,例如,上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块,以完成以上描述的全部或者部分功能。对于本发明实施例中涉及的模块、步骤的名称,仅仅是为了区分各个模块或者步骤,不视为对本发明的不当限定。

本领域技术人员应该能够意识到,结合本文中所公开的实施例描述的各示例的模块、方法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,软件模块、方法步骤对应的程序可以置于随机存储器(ram)、内存、只读存储器(rom)、电可编程rom、电可擦除可编程rom、寄存器、硬盘、可移动磁盘、cd-rom、或技术领域内所公知的任意其它形式的存储介质中。为了清楚地说明电子硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以电子硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。

术语“第一”、“第二”等是用于区别类似的对象,而不是用于描述或表示特定的顺序或先后次序。

术语“包括”或者任何其它类似用语旨在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备/装置不仅包括那些要素,而且还包括没有明确列出的其它要素,或者还包括这些过程、方法、物品或者设备/装置所固有的要素。

至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1