自适应控制空间温度上冲或下冲量的恒温装置的制作方法

文档序号:99892阅读:365来源:国知局
专利名称:自适应控制空间温度上冲或下冲量的恒温装置的制作方法
本申请与本发明人于1985年6月17日提出的序号745,462,题为“控制上冲和下冲的自适应钟控恒温装置”的申请有关,该申请与本申请属同一发明人并转让给本申请的受让人。
大量生产的钟控恒温器通常安装在各种不同类型的加热及制冷用途中。同一种恒温器也可用来控制强制空气加热及制冷系统,所有电系统,通常的电控强制循环制冷或加热(hydronic)系统和超大型的电控强制循环制冷或加热系统中。在这一领域中也使用多级加热泵,即采用多级加热及制冷,有时还与辅助加热相结合。每一种这类设备有着全然不同的升温或降温特性,这是为了节能的目的通过钟控恒温器实现的。
人们一直企图对某一特定类型的供热站的恒温器循环速率进行调整,而当恒温器按其内部事先安排的程序要求突然升温或降温时,这种供热通常不会提供好而舒适的控制。这些在瓶温器置定点上的巨大变化,在单级和多级型环境中会引起明显的上冲问题。上述相关专利申请尤其适合于解决单级装备中的这一问题。
一般来说,早晨明显的升温起动一般是由钟控恒温器提供的。为了节能,空间温度通常在夜晚被控制在较低的温度上,为了使空间温度从省能的较低的水平变为所需较高而舒适的水平,就要升温。这就使供热站锁定在典型的“开足”状态,空间温度按照某一速率上升,此速率是供热站一些特定参数及使用环境的函数。与钟控恒温器所要求的置定点温度相比,这一处理会引起空间温度明显的上冲。通常,在一两个小时内这一上冲会自我校正,不过这是置定点突然变化引起的不希望的结果,而此突变发生于当起动被编入这类恒温器的程序中。
随着以微型计算机为基础的恒温器的出现,有可能用设备内的时钟和伴随微机的存储器来执行各种类型的控制程序。时钟装置,微机装置,储存装置可使微机式恒温器测量实时的性能,并将有关性能的信息储存起来,再计算出恒温器新的运行参数。
当用微机式恒温器在夜晚降温、早晨升温时,置定点的大量改变是自动进行的,夜晚为了节能以较低温度运行(在供暖情况下),最终使温度回升到白天的舒适温度,在这两者之间进行试验和提供折衷当发生大的升温,典型的情况是使供热站转而迫使空气温度或传感器温度大大地超过所需的置定点温度,在单站系统中,如一台强制暖风炉,电热系统,电控强制循环制冷或加热系统可利用上述相关的申请中所公开的技术,即改变恒温器的增益。在多站装备中,如多级加热泵,这种增益的改变会引起严重问题,本发明克服了此问题,使恒温器的运行改变而恒温器的增益不改变。
在本发明中,可以调节置定点温度变化斜率以补偿置定点温度的突变。就加热型装备而言,若置定点从华氏60度变为华氏70度,很明显开始时供热站将按其最大能力运行。当空气温度升高时,在传感器能反应之前,空气温度将显著地超出所需的70度。若测出此上冲,并在恒温器下一次升温时适当地调整它,则上冲可以减小。由本装置来实现的运行方式是在必要时使置定点的变化斜率改变,这样恒温装置的置定点以渐变速率增加而不是从华氏60度跳变到70度。在下一个循环变化时,可再次测出上冲量。若上冲超过预定值,通常是比所需置定点温度高华氏半度,则变化斜率可以进一步改变。这可在恒温器运行中连续发生,直到上冲保持在可以接受的水平内。利用微机,时钟,和储存器,本申请中公开的微机式恒温器可以容易地进行调节,使得上冲或下冲受到控制。
本发明提供了自适应控制空间温度上冲或下冲量的钟控恒温装置,这种上冲或下冲是由于上述恒温装置中实时温度置定点的改变而引起的。它包括带有实时时钟装置及储存装置的微机装置;连接到上述微机装置用于输入一系列所需的控制冷热的温度置定点和所需的由恒温器控制温度的时刻的数据输入装置;用来在恒温装置处作温度监测的,带有连接装置的温度传感装置;将上述传感装置处的温度传送到上述微机装置并与上述微机相连的上述连接装置;上述恒温装置还包括输出开关装置,适用于由上述恒温装置控制加热或制冷设备;上述微机装置及上述存贮装置包括上冲/下冲校正程序装置,它可以用来调整上述恒温装置中实时的温度置定点的变化斜率;上述的上冲/下冲校正程序装置和上述存贮装置提供变化斜率以减少所述空间温度的上冲/下冲,这种上冲/下冲是由于上述实时的温度置定点的变化引起的,上述的上冲/下冲校正程序装置和上述的存贮装置,在温度置定点变化之后产生一个新的变化斜率,以连续调整上述恒温器的变化斜率,把上述空间温度的上冲或下冲限制在可被接受水平上。
图1为时间和温度的关系,以说明本发明的概念。
图2为微机式恒温器的方块图。
图3至图6为4天中连续的时间与温度间的关系图。
图7和图8表示经改进的置定点变化斜率。
在图1中以时间和温度的关系图来阐明本发明的工作原理。按时间(11)画出的温度(10)是一个钟控恒温器的典型早晨升温的加热循环。此恒温器可以是一个如图2所示的典型装置。通常白天温度为华氏70度(12),为了在夜晚节省能量,到时间(13)降为华氏60度。时间(13)一般约为夜晚10点或11点钟。
图上示出了传感器温度(14),它在(15)处在华氏70度左右徘徊。在时间(13),传感器温度(14)如(16)所示进行漂移,直到在夜晚某个时候降到华氏60度,传感器温度然后在(17)处徘徊。在启动时间Tstart(18),系统的钟控恒温装置开始早晨升温。早晨升温使传感器温度(14)如(20)所示上升,在(21)处与白天运行所需温度70度相交。在所示例子中,所需白天温度华氏70度是在早晨6点钟发生的。在这种运行方式中,固有的上冲达到最大值(22)即Tmax,可认为是华氏73度。然后温度以徘徊状态(23)下降,直到早晨以后一段时间方达到华氏70度。
传感器温度(14)要接近的置定点温度是如图所示按斜率(26)上升的。约半小时的监测周期(19)是从点(21)开始的,这点是恢复的基点。当置定点温度按(25)变化时,传感器温度确实在点(21)达到华氏70度,但将上冲到华氏73度(22)。
现已发现如在微机控制的钟控恒温器的储存器中将此信息储存起来,则所得信息可以由一个恒温装置中的程序装置操作,以把上冲或下冲降到一个可被接受的水平。典型的可被接受水平被认为是从所选的置定点(在本例中为华氏70度)起大不于或小于华氏半度。
己确定变化斜率可以由微机式恒温器调整到一个新的斜率,使新的变化斜率等于原来斜率加上预定的常数(图示为0.2)乘以华氏半度减去Tmax与Tsetpiont之差的值(〔0.5-(Tmax-Tsetpoint)〕。2.0)当这一程序被执行后,使新的斜率更少倾斜,从而使实际传感器温度与置定点温度更加接近。最后,通过一系列步骤,传感器温度可以达到所需置定点的温度,而不超过华氏半度的限制。这可以用图3到图6来详细说明,这些图说明了在连续4天的运行中,恒温器控制系统的工作状态。在讨论工作状态之前,将详细说明图2的微机控制恒温器的设计。
钟控恒温装置(30)示于图2。恒温装置(30)包括一个微机(31)及其储存器(32)和一个时钟装置(33)。与微机装置(31)一起还包括数据输入装置(34),它可以是一个键盘或者是提供各种置位的一些其它装置。恒温装置(30)还包括一个热置定点装置(35)和一个冷置定点装置(36),它们通过(37)和(38)接到数据输入装置(34)。数据输入装置(34)能置定恒温装置(30)的热和冷置定点。
恒温装置(30)通过一传感装置40(它可以是热敏电阻或其它类型的热敏传感装置)检测室内或空气的温度。传感装置(40)通过通道(41)将信息送到微机装置31,还经导体(42)将一个信号送到两个相加器。热相加点或相加器(43)与热置定点装置(35)相连接,而冷相加器(45)则经导体(46)与冷置定点(36)相连接。热置定点装置(35)和冷置定点装置(36)由(47)连接起来,以使微机装置(31)来调整热置定点(35)或冷置定点(36)从而按微机装置(31)予定的斜率来确定置定点温度的变化。置定点斜率的变化可将上冲或下冲调节到最小,如图1的有关说明所述。
相加点(43)和(45)又经导体(50)连接到恒值电路(51),它在(52)与并联的积分装置(53)相加。这样构成常规的电子式恒温器的一部分。相加装置(52)连接到另一相加装置(54),然后接到常规的循环控制器(55)。循环控制器使恒温器以约每小时6次循环,这被认为是提供良好温度控制所必要的。循环控制装置(55)有一输出(56)送到开关装置(57),它可以是任何型式的输出开关,诸如继电器固态开关,用以控制适合于受恒温装置(30)控制的加热及制冷设备。
恒温装置(30)的运行与图1结合起来就很易理解。恒温装置(30)按常规首先起动一个降温循环,然后是升温循环。图1中上冲量(22)由微机(31)和储存器(32)记录下来,经过计算,算出适当的斜率改变(参看图1)。微机(31)然后经通道(47)提供一个合适的斜率改变至热置定点装置(35)或冷置定点装置(36),这取决于所用的是加热还是制冷循环。新的置定点由恒温装置(30)执行,然后再次计算新的斜率,直到计算出上冲(22)不超过所需舒适范围的置定点温度华氏半度(供暖情况下),或下冲不低于华氏半度(制冷情况下)。
在图3到图6中示出某一典型建筑中一连4天中加热装置夜晚降温,早晨升温的运行情况,以说明变化斜率改变的效果。图3至图6的每一图上在24小时周期内均有两次降温和升温循环。图3至图6的图上还包含一个所谓的最佳启动函数。最佳启动是一个众所周知的方法,即早晨升温的启动时间开始得愈来愈早,这一点可以用传感器测量室外温度并调整启动时间来实现,也可以直接结合在固态恒温器装置如下进行当供热站己运行时,则对夜晚温度的变化率进行取样,并予测为了在所选时刻达到所需置定点所必须的启动供热站的时间。由于此方法是已知的,而且不是本发明中的一部分。因此,在下面的讨论中将不包括对图3至图6这部分的详细说明。
在图3中,温度(60)按时间(61)的24小时循环而画出。所需置定点温度如(62)所示,己在恒温装置(30)中事先编好程序,并于零点(或午夜)在华氏60度处启动。约在早晨6时,置定点温度升至华氏70度。这时,供热站自我锁定于最大运行状态,如果它是多级的,典型情况是所有各级均达“开足”状态,以满足温度从华氏60度升到华氏70度的需要。这种对建筑物的最大热量输入引起空气温度(63)很陡的上升,超出置定点温度约10度左右。空气温度(63)比起传感器(64)的温度或墙壁温度(65)来惰性要小。传感器温度超出置定点温度(64)要比超出壁温(65)更多。
约在早晨9点,为了白天降温节能,温度降回,此时空气温度(63),传感器温度(64),墙壁温度(65)都向较低的置定点温度(62)漂移下来。约在下午4点钟,置定点温度(62)再次上升,而所有的上冲问题又再次出现。
在本发明中,这一信息被微机(31)和贮存器(32)以及时钟装置(33)累积起来,并为新的置定点温度(62)算出变化斜率。此新的变化斜率比原来的斜率更为平缓,如图4中的(66)。置定点温度(62)的较平缓变化斜率使得空气温度(63)的上冲就不那么严重,而传感器温度,墙壁温度变得更靠近置定点温度(62)。这一信息再次被微机装置(31),贮存装置(32),时钟装置(33)所积累,进行了新的计算供第三天的运行,把此示于图5。在图5中,第三天出现的斜率(67)又比图3和图5中前两天的斜率更平缓。在这一特例中,空气温度现在己降到上冲只有几度,空气温度(63)、墙壁温度(65)与变化斜率更为接近。应当注意,在下午的升温中,置定点温度(62),空气温度(63),传感器温度(64),墙壁温度(65)都降到相互接近。而且正在接近达到最大允许上冲量不超过华氏半度的要求。
在图6中,变化斜率(70)己变得更加平缓。在这一特定情况下,应当注意,倾斜在一天中更早的时间开始,这是由于包含在恒温器中的最佳启动特性的效果,但这并非本发明的一部分。应当注意,在(70)处的斜率使空气温度(63)可以更为平缓地上升,传感器温度(64)更接近于编入系统中的置定点温度。一旦系统开始工作于所需水平上,它继续在储存器(32)中储存信息,并和微机装置(31)、时钟装置(33)一起运行。若置定点发生任何变化或环境发生变化时,恒温器能自我调整变化斜率,使最大上冲继续保持在华氏半度以内。
变化斜率(26)到此为止总是示为一直线。实际上,变化斜率可以由任何数量的不同的曲线构成。在图7和图8中示出两种改进曲线,在图7中变化斜率(70)呈阶梯状,在图8中变化斜率(71)为非直线形,它可以是指数形的。
本说明书中只示出了一种有代表性的恒温装置(30),它是微机型结构的。也只示出了一种调整斜率的方式。但是本发明的范围实际上非常广泛,它包括根据上冲或下冲来逐步调整恒温器置定点温度变化的构思方案,并能用各种特殊的硬件,和采用各种类型的斜率变化公式来执行。据此,申请者希望其发明的范围仅受限于所附权利要求
的范围。
权利要求
1.自适应控制由于在恒温装置中现时温度置定点(35,36)的变化而引起空间温度的上冲或下冲量的钟控恒温装置(30),它包括带有实时时钟装置(33),贮存装置(32)的微机装置(31);连接到上述微机装置以输入一组所需冷热控温置定点(35)、(36)以及所需的由上述恒温装置控制温度的时间的数据输入装置(34);带有连接装置(42),在上述恒温装置处监测温度的温度传感装置(40)和(41);上述连接装置(42),连到上述微机装置,以将上述传感装置的温度传送到上述微机装置;上述恒温装置还包括适于由上述恒温装置控制加热或制冷设备的输出开关装置(57);上述微机装置(31)和上述储存装置(32)包括上冲/下冲校正程序装置,它用以调整上述恒温装置的现实温度置定点的变化斜率(26);上述上冲/下冲校正程序装置及上述记忆装置提供一个变化斜率,以减少由于上述现实温度置定点的变化而引起的上述空间温度的上冲/下冲;上述上冲/下冲校正程序装置及上述贮存装置,在每一次温度置定点改变以后,产生一个新的变化斜率RNEW,这样逐步调整上述恒温器的上述变化斜率,以限制上述空间温度的上冲/下冲量到可接受的水平。
2.如权利要求
1中所述的钟控恒温装置(30),其中上述实时时钟装置(32)在上述现实温度置定点达到预定时间之后,测量一定的时间间隔(19),以使上述上冲/下冲校正程序装置及上述储存装置来确定新的变化斜率供上述恒温装置用在下一次上述温度置定点变化中。
3.如权利要求
2中所述的钟控恒温装置(30),其中所述的一定的时间间隔(19)小于2小时。
4.如权利要求
2中所述的钟控恒温装置(30),其中任何时候当上述冲量超过华氏半度时,上述空间温度(64)的上述冲量受限于下一次变化斜率的变化。
5.如权利要求
4中所述的钟控恒温装置(30),其中上述一定时间间隔(19)小于2小时。
6.如权利要求
5中所述的钟控恒温装置(30),其中上述新的斜率Rnew等于原来的斜率Rold加上预定常数2.0乘以华氏半度减去最大温度与置定点温度(62)之差。
7.如权利要求
1中所述的钟控恒温装置(30),其中上述变化斜率是非线性的(70)或(71)。
8.如权利要求
1中所述的钟控恒温装置(30),其中上述变化斜率是指数性的(71)。
9.如权利要求
1中所述的钟控恒温装置(30),其中上述变化斜率是具有平均变化斜率的阶梯式曲线(70)。
专利摘要
一种微机式钟控恒温器(30),当置定点改变时, 可调节置定点温度(25)的变化斜率(26)。恒温器中 的微机靠恒温器的传感器温度(14)能够确定空气温 度(63)和所需置定点温度(25)之间的上冲或下冲量 (22),并能计算升温的斜率变化,从而使上冲处于可 接受的水平之内。
文档编号G05D23/19GK86103962SQ86103962
公开日1987年2月4日 申请日期1986年6月9日
发明者索马斯·J·比基 申请人:霍尼韦尔公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1