一种全新光伏并网逆变器多波峰mppt算法

文档序号:9248959阅读:795来源:国知局
一种全新光伏并网逆变器多波峰mppt算法
【技术领域】
[0001]本发明涉及一种逆变器多波峰MPPT算法,具体是一种全新光伏并网逆变器多波峰MPPT算法,属于计算机网络、图形图像处理、计算机性能改进、加密解密、汉字输入等应用技术领域。
【背景技术】
[0002]每一个光伏发电系统都有一条I3U曲线,这条曲线为抛物线函数P = f(U),也就是说每一个电压对应着一个唯一的功率值,作为光伏系统的控制中心,光伏并网逆变器的一个主要功能就是控制光伏系统的工作电压U在一个合理的值Umax,使系统的输出功率P处于最大输出点Pmax。但是在实际使用过程中因为阴影遮挡等原因会使原有系统的曲线产生2个甚至更多的级值点Ulmax、U2max...UNmax,而这些级值点中只有一个为真正的最大值Umax,其余的极值点仅仅为局部最大值,这个现象是由光伏电池板的自身特性决定的。通常情况下,一般是减少光伏系统的容量,通过降低使用面积来避开可能产生阴影的区域,也有一些厂家使用定周期扫描法来重新选择最大功率点,也就是说每隔一段时间扫描整个系统的PU曲线,也就说控制系统的工作电压从零到最大电压扫描,来判断目前工作点的最大值是不是系统的真正最大值。
[0003]目前随着国内分布式光伏系统的逐步普及,现实中不可避免会出现一些局部阴影问题,比如落叶、灯杆、树木、女儿墙等等,所以为了更好的在面对此类问题时,能够把损失降低到最低,必须要有一套完全不同而且能够大幅提高局部阴影情况下的MPPT效率的算法,要基于现实的应用特性,大幅提高判断当前工作点的最大值是不是系统最大值的软件计算效率,光伏系统本身大多数情况下是没有阴影问题,如果为了兼容阴影情况下的追踪,没有阴影遮挡的系统每隔一段时间就要从系统最大值强行变成零,然后又要花费一段时间重新从零到最大电压的过程,这就会带来额外的功率损失,致使正常的系统每隔一段时间就要损失功率一次,累积起来是一个不小的数字。之所以会出现这个情况,就是定周期扫描法没有实现有阴影和没有阴影的判断,仅仅只是实现了在一定时间周期内系统避免陷入局部最大工作点的问题。另外,当阴影发生的时候,阴影并不是一成不变的,当阴影发生变化的时候,光伏系统追踪也是要跟进变化,光伏系统有可能在局部阴影和完全没遮挡之间进行转换,比如女儿墙在东边时,早上光伏系统会出现局部阴影问题,但是到了下午,光伏系统就会完全没有遮挡,所以全周期扫描法没办法进行这种状态的转换,所以无法满足现实情况的应用,当阴影发生之后,全周期扫描法一样有非常大的缺陷,全周期扫描法是被动的,没法做到实时性,它只能实现当阴影发生之后某一时间段内动作,而不是马上动作,同时,当它开始动作的时候,耗时长,整个扫描范围涵盖从零到系统最大电压,扫描范围大,没有优化,算法比较简单,所以无论是从阴影情况的转变、系统响应的实时性还是扫描范围的优化方面,原有的全周期扫描法都不能满足现实情况的应用,因此,针对上述问题提出一种全新光伏并网逆变器多波峰MPPT算法。

【发明内容】

[0004]针对上述现有技术存在问题,本发明提供一种全新光伏并网逆变器多波峰MPPT算法,相比现有技术,开创性的记忆上一分钟的最佳点工作电压,通过最佳工作电压的变化来作为光伏系统阴影情况的判断条件,压缩扫描范围,避免没有意义的系统工作,提高响应速度和追踪效率,可以有效的解决【背景技术】中的问题。
[0005]为实现上述目的,本发明采用的技术方案是:一种全新光伏并网逆变器多波峰MPPT算法,包括光伏系统的工作电压满足公式的确定、阴影判断公式的确定和阴影扫描,其具体方式如下:
[0006](I)、所述光伏系统的工作电压满足公式的确定,太阳能组件在现实应用中有两个特性,一个就是当光照强度变化时,对光伏系统的最佳工作电压点影响很小,对电流影响很大,当某一块组件光照强度特别低,触发旁路二极管工作时才会导致组串之间电压电流不匹配,出现多波峰的情况,另外一个是当温度剧烈变化时,光伏系统的最佳工作电压变化较大且满足下面公式:Vmppt = VmpptO* (1+0.64% *ΔΤ);
[0007](2)、所述阴影判断公式的确定,在没有阴影遮挡情况下,光伏板自身的特性和组串方式决定了最开始工作时的初始最佳工作电压,当某一串中某一些组件发生严重遮挡时或者这种遮挡消失的时候,会出现工作电压变化较大的情况,而任何一块组件出现阴影问题时,把上一分钟的工作电压记忆下来,作为下一分钟阴影情况的判断条件,是动态且主动的,确定判断公式就是:U2 #U1*(1±5% )。
[0008](3)阴影扫描,当出现局部阴影的时候,局部最佳工作点有可能在上一分钟最佳工作点的右侧或者左侧,但是此时并不知道当前工作点是不是系统最佳工作点,在需要进行扫描并找出其他局部最佳工作点并比较。当此种情况发生后,以当前电压为原点向上一分钟最佳工作点扫描,扫描超过上一分钟最佳工作点后继续沿同一方向扫描,只到找到离上一分钟最佳工作点最近的一个局部最佳点为止,然后进行比较这个过程中所找到的最佳工作点功率,功率最大的地方就是系统的最佳工作点。
[0009]进一步的,所述开创性的记忆上一分钟的最佳点工作电压,通过最佳工作电压的变化来作为光伏系统阴影情况的判断条件。
[0010]进一步的,所述阴影扫描为压缩范围进行扫描。
[0011]进一步的,所述阴影判断公式的确定过程中,所述光伏板在获知光伏系统的相关参数后,可以直接初步判断当前系统最佳工作点。
[0012]进一步的,所述阴影判断公式的确定过程中,所述光伏系统正常运行后,前后一分钟内温度不可能突变,并且光照强度的变化对系统最佳工作点的电压影响不大。
[0013]进一步的,所述阴影判断公式的确定过程中,所述光伏系统电压与当时的光照关系不大,与温度的关系较大。
[0014]进一步的,所述任何一块组件一分钟之内温度变化为5度或者一分钟之内温度的影响顶多带来3.3%的最佳工作电压波动。
[0015]进一步的,所述阴影情况的发生发生的判断,定义下一分钟同上一分钟的最佳工作电压发生5%以上变化时认为光伏系统发生异常,即有阴影情况的发生。
[0016]本发明的有益效果是:
[0017]1、通过创新阴影情况下的MPPT追踪算法,提出有无阴影情况的判断公式,实现没有阴影情况发生时,系统完全按照正常模式运行,大大提高发电量,实现当阴影情况发生时,系统快速响应,及时动作,较大提高动态追踪效率;
[0018]2、提出当阴影情况发生时,如何优化追踪范围,实现最快的时间、最小的范围内找到系统最佳工作点,大大规避了没有意义的扫描过程,对光伏系统的稳定性和发电量有较大改善,有良好的经济效益和社会效益,适合推广使用。
【附图说明】
[0019]附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
[0020]在附图中:
[0021]图1为本发明扫描过程流程图。
【具体实施方式】
[0022]下面将结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1