一种飞轮电池用轴向磁轴承抗干扰控制器的构造方法

文档序号:10653356阅读:364来源:国知局
一种飞轮电池用轴向磁轴承抗干扰控制器的构造方法
【专利摘要】本发明公开一种飞轮电池用轴向磁轴承抗干扰控制器的构造方法,将开关功率放大模块、飞轮电池轴向磁轴承、电涡流位移传感器模块和位移接口电路模块依次串联,与扰动检测模块一起组成磁轴承系统,将位移误差值输入滤波跟踪误差模型获得电流输出信号,将电流输出信号分别作为神经网络控制器、优化控制器的输入,利用位移误差值对神经网络控制器实时训练,分别得到神经网络控制器、优化控制器和鲁棒控制器的输出,将神经网络控制器、优化控制器、鲁棒控制器、鲁棒控制器参数优化模块与位移给定模块、滤波跟踪误差模型一起构成抗干扰控制器,具有较强的抗干扰鲁棒性和动静态控制性能。
【专利说明】
-种飞轮电池用轴向磁轴承抗干扰控制器的构造方法
技术领域
[0001] 本发明属于特种电力传动控制设备领域,具体是飞轮电池用轴向磁轴承抗干扰控 制器的构造方法,适用于电动汽车飞轮电池领域轴向磁轴承的高性能抗干扰控制。
【背景技术】
[0002] 飞轮电池是一种应用前景广阔的新型储能装备,具有大储能容量、无污染、无噪 声、高效率、长寿命、适用广、维护简单及可实现连续工作等优点,它为解决目前广泛关注的 电动汽车动力电池问题提供了新途径。用于高速飞轮支承的轴承技术是制约飞轮电池效 率、可靠性、W及使用寿命的关键因素之一,机械轴承由于存在机械摩擦磨损、润滑的问题, 很难满足飞轮电池高速运行的工况。磁轴承采用反馈控制技术,能对飞轮转子的轴向和径 向进行定位,使高速飞轮运转的安全性和稳定性得到显著提高,且磁轴承本身突出的优点 是可超高速运行,因此十分适合电动汽车飞轮电池的高速支承。
[0003] 目前,对飞轮电池用磁轴承的研究主要集中在径向磁轴承方面,而对飞轮电池轴 向磁轴承的研究并不多见。飞轮电池轴向磁轴承主要是用来对飞轮转子轴向精确定位控制 的,其控制效果的好坏将直接影响到整个飞轮电池的控制性能。目前常采用工业中的PID控 制方法来控制磁轴承系统,但很难适用于飞轮电池用轴向磁轴承,特别在电动汽车行驶工 况的复杂多变性,势必带来飞轮电池用轴向磁轴承系统的参数时变、负载突变W及各种随 机扰动的干扰。
[0004] 因此,为了从本质上解决飞轮电池用轴向磁轴承系统常规控制方法控制效果欠佳 的难题,同时又要保证飞轮电池用轴向磁轴承系统各项控制性能指标,如轴向稳态跟踪精 度、动态响应速度和较强的抗干扰鲁棒性能,需采用新的控制方法。

【发明内容】

[0005] 本发明的目的是针对飞轮电池用轴向磁轴承系统现有控制方法的缺陷,提供一种 飞轮电池用轴向磁轴承抗干扰控制器的构造方法,用该方法构造的控制器能有效提高飞轮 电池用轴向磁轴承系统各项控制性能指标,特别是抗干扰鲁棒性能。
[0006] 本发明采用的技术方案是包括W下步骤:
[0007] 1)将开关功率放大模块、飞轮电池轴向磁轴承、电满流位移传感器模块和位移接口 电路模块依次串联,与扰动检测模块一起组成磁轴承系统,磁轴承系统W轴向控制电流iz为 输入,W飞轮转子的轴向位移Z为输出;建立磁轴承系统的转子动力学模型为
A和B分别是轴向位移系数和轴向控制电流系数,r是飞轮电池轴向磁轴承的扰动r ;
[000引2)将轴向位移Z与位移给定模块输出的位移信号参考值Zr相比较得到位移误差值 Gz,位移误差值ez输入滤波跟踪误差模型,获得输出电琉.kl和k2分 别为滤波跟踪误差模型系数;
[0009] 3)采用神经网络来逼巧
杉 构成神经网络控制器,采丹
构建优化控制器,采用G3 = Ssign(r)构建鲁棒控 制器,S为鲁棒控制器系数变量,采用= 构建输入为鲁棒控制器参数学习率恥、输出为 一阶导数#的鲁棒控制器参数优化模块,将输出电流r作为鲁棒控制器第一个输入、一阶导 数在作为第二个输入,将输出电流r分别作为神经网络控制器、优化控制器的输入,利用位 移误差值ez对神经网络控制器实时训练,分别得到神经网络控制器、优化控制器和鲁棒控 制器的输出电流梦2、皆1、皆%
[0010] 4)将神经网络控制器、优化控制器、鲁棒控制器、鲁棒控制器参数优化模块与位移 给定模块、滤波跟踪误差模型一起构成抗干扰控制器,将电流/f、/f、f3相结合构成轴 向控制电流iz,实现对磁轴承系统控制。
[0011] 进一步地,上述步骤3)中,将位移误差值ez作为积分型PD控制模块的输入,输出为 轴向控制电流iz,对位移误差值ez分别求积分和求导得到Jez(T)ClT和4,对位移信号参考值 Zr求一阶和二阶导数得到專和多,组成神经网络的训练样本集Uez(T)ClT,与_,与,聲:,iz},利 用BP算法离线训练神经网络,得到神经网络的实际输出i'z,该输出i'z中包含扰动r的实际 数值,离线训练得到神经网络控制器。
[0012] 本发明的有益效果是:
[OOU] 1、本发明通过构造优化控制器和神经网络控制器,分别提高磁轴承系统稳态控制 性能和抗干扰性能,在此基础上,构造鲁棒控制器来进一步提高神经网络控制器的控制精 度。上述=个子控制器构成磁轴承系统的抗干扰控制器,可W有效解决飞轮电池用轴向磁 轴承系统现有控制器的不足,具有较强的抗干扰鲁棒性和动静态控制性能。
[0014] 2、本发明将电动汽车飞轮电池用轴向磁轴承系统的参数非线性时变特性和外部 负载扰动突变特性有效等同为扰动变量,建立抗干扰控制器,并采用神经网络逼近该抗干 扰控制器,提高其的控制精度。在实现过程中,本发明所构造的控制器仅需要磁轴承系统的 输入和输出信号(易测变量)、W及输入输出信号的导数和微分信号(通过软件算法实现), 因此该控制器不需要增加额外的硬件设备,有利于降低控制器成本,实现方便可靠。
【附图说明】
[0015] 图1是由开关功率放大模块11、飞轮电池轴向磁轴承12、电满流位移传感器模块 13、位移接口电路模块14和扰动检测模块15组成磁轴承系统16的等效框图;
[0016] 图2是利用位移给定模块21、滤波跟踪误差模型41、神经网络控制器61、优化控制 器71、鲁棒控制器81和鲁棒控制器参数优化模块82构成的抗干扰控制器91对磁轴承系统16 进行控制的结构框图;
[0017] 图3是图2中神经网络控制器61的神经网络权值训练原理框图;
[0018] 图中:11.开关功率放大模块;12.飞轮电池轴向磁轴承;13 .电满流位移传感器模 块;14.位移接口电路模块;15.扰动检测模块;16.磁轴承系统;21.位移给定模块;31.积分 型PD控制模块;41.滤波跟踪误差模型;51.位移检测模块;61.神经网络控制器;71.优化控 制器;81.鲁棒控制器;82.鲁棒控制器参数优化模块;91.抗干扰控制器。
【具体实施方式】
[0019] 如图I所示,将开关功率放大模块11、飞轮电池轴向磁轴承12、电满流位移传感器 模块13、位移接口电路模块14依次串联,和扰动检测模块15-起作为一个整体组成磁轴承 系统16,该磁轴承系统16W轴向控制电流iz为输入,W飞轮转子的轴向位移Z为输出。其中, 开关功率放大模块11的参考输入是电流iz,开关功率放大模块11的两个输出为两个电流值 io+iz和io-iz,其中电流io是偏置电流,该电流值io+iz和io-iz作为飞轮电池轴向磁轴承12的 两个输入,飞轮电池轴向磁轴承12的输出为轴向位移初始信号Z0,轴向位移初始信号ZO作为 电满流位移传感器模块13的输入,电满流位移传感器模块13输出为参考电压信号Uo, W参 考电压信号Uo驱动位移接口电路模块14,扰动检测模块15用于检测飞轮电池轴向磁轴承12 的不确定性的总的扰动r,包括参数的时变、负载的突变W及不确定性扰动等,将总的扰动 r和位移接口电路模块14的输出相结合,得到输出为飞轮电池轴向磁轴承12的轴向位移信 号Zd
[0020] 针对磁轴承系统16,建立磁轴承系统16的转子动力学模型。通过分析、等效与推 导,建立磁轴承系统16的转子动力学方程为:
[0021]
(1-1 )
[0022] 式中,Z和iz分别磁轴承系统16的转子轴向位移和轴向控制电流;S、5分别是轴向 位移Z的一阶和二阶导数;A和B分别磁轴承系统16的转子轴向位移系数和轴向控制电流系 数,根据磁轴承系统16的实际工作情况,确定A=16.3,B = 5.9; r为不确定性的总的扰动, r的值与磁轴承系统16的参数、负载W及扰动有关,将由下述的神经网络学习得到。
[0023] 如图2所示,通过位移检测模块51检测得到磁轴承系统16转子实际的轴向位移Z, 将转子实际的轴向位移Z与位移给定模块21输出的位移信号参考值Zr相比较,得到位移误 差值ez,将位移误差值ez作为滤波跟踪误差模型41的输入,滤波跟踪误差模型41将输入误差 值ez中的明显干扰值滤除,并获得电流输出信号,即输出电流r,通过分析、等效与推导得到 输出电流r的表达式为:
[0024]
(1-2)
[0025] 其中,ki和k2分别为滤波跟踪误差模型系数,根据磁轴承系统16的实际工作情况, 确定 ki = 23.5,k2 = 6.8。
[0026] 滤波跟踪误差模型41的输出电流r分别输入并联的神经网络控制器61、优化控制 器71、鲁棒控制器81和鲁棒控制器参数优化模块82运四个模块。
[0027] 将方程(1-1)和(1-2)相结合,并考虑磁轴承系统16参数时变、负载突变等不确定 性扰动特性,可W得到磁轴承系统16的抗干扰控制器91的解析表达式G为:
[002引 (1-3)
[0029]
[0030]
[0031](1-5)
[0032] Gs = Ssi 即(r) (1-6)
[0033] 其中,sign( ?)为符号函数,S为鲁棒控制器系数变量。
[0034] 如图3所示,采用神经网络来逼近解析表达式G!=扩{片+批+如;I -.4(年叫A *,村化)-r , 构成神经网络控制器61。将位移给定模块21输出的轴向位移信号参考值Zr与位移检测模块 51检测到的转子实际的轴向位移Z相比较得到的轴向位移误差值ez作为积分型PD控制模块 31的输入,积分型PD控制模块31的输出为轴向控制电流iz,并将该轴向控制电流iz加到磁轴 承系统16的输入端。对位移误差值ez分别求积分和求导,得到Jez(T)ClT和4;对位移给定模 块21输出的位移信号参考值Zr求一阶和二阶导数,得到令和马.;并对信号做规范化处理,组 成神经网络的训练样本集{/ez(T)dT,<>_,V,马,iz},最后利用常规的变步长加动量项的 BP算法离线训练神经网络,从而确定神经网络的各个权值系数,得到神经网络的实际输出 i'z,该输出i'z中包含不确定性扰动r的实际数值,从而离线训练得到神经网络控制器61。 本发明采用神经网络来逼近抗干扰控制器中的解析表达式G2,有效地解决了不确定性扰动 r无法精确建模的难题。
[0035] 将图2中滤波跟踪误差模型41的输出电流r作为神经网络控制器61的输入,并利用 位移误差值ez对神经网络控制器61进行实时训练,得到其输出为电流zf。
[0036] 利用公式(1-4),
裝构建优化控制器71,将滤波跟踪误差模型41的 输出电流r作为优化控制器71的输入,得到优化控制器71的输出为电流if。
[0037] 利用公式(l-6),G3 = Ssign(r)来构建鲁棒控制器81,将滤波跟踪误差模型41的输 出电流r作为鲁棒控制器81的第一个输入。
[0038] 利用下式(1-7),
来构建鲁棒控制器参数优化模块82,鲁棒控制器参数优 化模块82的输入为鲁棒控制器参数学习率ns,输出为鲁棒控制器系数变量一阶导数在,将鲁 棒控制器系数变量一阶导数在作为鲁棒控制器81的第二个输入,得到鲁棒控制器81的输出 为电流/f。根据磁轴承系统16的实际工作情况,确定Ils=I .03。
[0039]
0-7)
[0040] 将优化控制器71的输出电流梦>神经网络控制器61的输出电流f2 W及鲁棒控制 器81的输出电流if相结合,构成磁轴承系统16的轴向控制电流i Z,磁轴承系统16的输出为 飞轮转子的轴向位移Z。如此,将神经网络控制器61、优化控制器71、鲁棒控制器81和鲁棒控 制器参数优化模块82并联之后,与位移给定模块21和滤波跟踪误差模型41相串联构成磁轴 承系统16的抗干扰控制器91,实现对电动汽车飞轮电池用轴向磁轴承系统的高性能鲁棒控 制。
[0041] 根据W上所述,便可W实现本发明。对本领域的技术人员在不背离本发明的精神 和保护范围的情况下做出的其它的变化和修改,仍包括在本发明保护范围之内。
【主权项】
1. 一种飞轮电池用轴向磁轴承抗干扰控制器的构造方法,其特征是包括以下步骤: 1) 将开关功率放大模块(11)、飞轮电池轴向磁轴承(12)、电涡流位移传感器模块(13) 和位移接口电路模块(14)依次串联,与扰动检测模块(15)-起组成磁轴承系统(16),磁轴 承系统(16)以轴向控制电流i z为输入,以飞轮转子的轴向位移z为输出;建立磁轴承系统 (16)的转子动力学模型为S =?"+_?ζ +Γ *A和B分别是轴向位移系数和轴向控制电流系数, Γ是飞轮电池轴向磁轴承(12)的扰动Γ ; 2) 将轴向位移z与位移给定模块(21)输出的位移信号参考值Zr相比较得到位移误差值 ez,位移误差值ez输入滤波跟踪误差模型(41),获得输出电;A1和 k2分别为滤波跟踪误差模型系数;3) 采用神经网络来逼迈宋构成 神经网络控制器(61),采用61:=,1^-也;)构建优化控制器(71),采用63 = 35^1^)构建鲁 棒控制器(81),δ为鲁棒控制器系数变量,采用S = 构建输入为鲁棒控制器参数学习率 ns、输出为一阶导数沒的鲁棒控制器参数优化模块(82),将输出电流r作为鲁棒控制器(81) 第一个输入、一阶导数i作为第二个输入,将输出电流r分别作为神经网络控制器(61)和优 化控制器(71)的输入,利用位移误差值e z对神经网络控制器(61)实时训练,神经网络控制 器(61)、优化控制器(71)和鲁棒控制器(81)的输出分别为电流f 2、if、/f; 4) 将神经网络控制器(61 )、优化控制器(71 )、鲁棒控制器81、鲁棒控制器参数优化模块 (82)与位移给定模块(21)、滤波跟踪误差模型(41) 一起构成抗干扰控制器,将电流 /f、/f、/f相结合构成轴向控制电流iz,实现对磁轴承系统(16)控制。2. 根据权利要求1所述飞轮电池用轴向磁轴承抗干扰控制器的构造方法,其特征是:步 骤3)中,将位移误差值ez作为积分型PD控制模块(31)的输入,输出为轴向控制电流i z,对位 移误差值ez分别求积分和求导得到丨^(1)办和<,对位移信号参考值 Zr求一阶和二阶导数得 到之和毛,组成神经网络的训练样本集{|&0-)?/Γ,?£,4,元,U,利用BP算法离线训 练神经网络,离线训练得到神经网络控制器(61),神经网络的实际输出电流V ζ,该电流输 出V ζ中包含扰动Γ的实际数值。3. 根据权利要求1所述飞轮电池用轴向磁轴承抗干扰控制器的构造方法,其特征是:步 骤1)中,开关功率放大模块(I 1)的输入是轴向控制电流iz,开关功率放大模块(I 1)有两个 输出为电流值i〇+iz和i『iz,电流i〇是偏置电流,电流值i〇+i z和是飞轮电池轴向磁轴承 (12)的两个输入,飞轮电池轴向磁轴承(12)的输出为轴向位移初始信号ZO,轴向位移初始 信号ZQ作为电涡流位移传感器模块(13)的输入,电涡流位移传感器模块(13)输出为参考电 压信号U〇,以参考电压信号Uo驱动位移接口电路模块(14),扰动检测模块(15)检测飞轮电池 轴向磁轴承(12)的不确定性的总的扰动Γ。4. 根据权利要求1所述飞轮电池用轴向磁轴承抗干扰控制器的构造方法,其特征是:步 骤2)中,采用位移检测模块(51)检测得到磁轴承系统(16)的轴向位移z。5. 根据权利要求1所述飞轮电池用轴向磁轴承抗干扰控制器的构造方法,其特征是:A = 16.3,B = 5.9,ki = 23.5,k2 = 6.8,ηδ = 1.03。
【文档编号】G05B13/04GK106019945SQ201610553116
【公开日】2016年10月12日
【申请日】2016年7月14日
【发明人】孙晓东, 苏伯凯, 陈龙, 杨泽斌, 江浩斌, 汪若尘, 徐兴, 陈建锋, 李可
【申请人】江苏大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1