改进的离心泵性能恶化检测的制作方法

文档序号:6377268阅读:331来源:国知局
专利名称:改进的离心泵性能恶化检测的制作方法
技术领域
本发明一般涉及离心泵,以及更确切的,涉及用来确定一个离心泵恶化的一个被改进的方法和装置。
背景技术
如人们所知,一个离心泵具有配有叶片的一个轮子,并且被称为一个叶轮。所述叶轮对经过所述泵的流体给予运动。一个离心泵提供了一个相对稳定的流体流。用来实现所需的水头的压力通过在所述旋转叶轮中流体的离心加速来产生。所述流体从轴向流向所述叶轮,被它偏转,然后通过所述叶片之间的孔流出。这样,所述流体就经历了一个方向的变化并被加速。这在所述泵的出口产生了压力的提高。当离开所述叶轮时,所述流体可以首先通过一个固定叶片环,其围绕着所述叶轮,并且一般被称为一个扩散器。在该设备中,由于渐渐变宽的通道,所述流体的速度被减小,它的动能被转换成压力能量。当然需要注意,在一些离心泵中没有扩散器,以及所述流体直接从叶轮通过到所述涡旋。所述涡旋是所述泵的一个逐渐变宽的螺旋外壳。离心泵是被熟知的,并且被广泛运用在许多不同的环境和应用中。
所述现有技术也将离心泵称为速度机器,这是因为所述泵操作需要,第一,所述液体速度的产生;第二,从速度水头到一个压力水头的转换。所述速度由所述旋转叶轮给出,所述转换在涡轮类型中通过扩散引导叶片完成,在所述涡旋类型泵中在围绕所述叶片的涡旋外壳中产生。除了一些例外,所有的单级泵通常都是所述涡旋型的。离心泵的比速度Ns是NQ1/2/H3/4。一般的,N用每分钟转数来表达,Q用每分钟加仑来表达,水头(H)用英尺来表达。一个叶轮的比速度(specific speed)是它的类型的一个指标。用于高水头的叶轮通常具有低的比速度,而用于低水头的那些则具有高的比速度。所述比速度在确定所述最大吸入水头中是一个有价值的指标,其可以被采用而没有形成空洞或振动的危险,这两者都对能力和效率有负面影响。离心泵的工作点是极其重要的。
现有技术中采用了多种普通方法来在所述离心泵的性能恶化时进行监控和检测。一个这样的技术工作在固定速度的泵上。当所述泵是新的时,所述流和总动态水头(TDH)被测量。该信息被存储为一个图、表格或多项式曲线。随着所述泵的老化,所述流和TDH被周期性的测量,并被与所述新的流和TDH相比较。如果在一个给定流的所述TDH降到低于一个预设的百分数,那么所述泵就已经恶化到了一个水平,从而所述泵就需要被替换或改造。
一个第二技术工作在一个固定速度的泵上。所述流和刹车马力(BHP)在所述泵是新的时候被测量。所述信息同样被存储为一个图、表格或者多项式曲线。随着所述泵的老化,所述流和BHP被周期性的测量,并且与原来的流和BHP相比较。如果在一个给定流和相同速度的BHP已经提高到高于一个预设的百分数,那么所述泵和/或马达就已经恶化。需要进行进一步的调查来确定设备的哪个旋转零件需要被修理或替换。这适用于比重或粘度不随时间变化的抽运量。
在第三种情况中,对一个可变速度泵,所述流和TDH在所述泵是新的时候被测量。该信息还是被存储为一系列图、表格或多项式曲线。随着所述泵的恶化,所述速度、流和TDH被周期性测量,并且与原来的流和TDH相比较,其使用了亲和法则(Affinity Law)来将所述测量转换成最近速度曲线。如果在一个给定流的TDH降到一个预设的百分数以下,那么所述泵就已经恶化到了一个不期望的水平。该水平将意味着需要一个被改造的泵,或者所述泵必须被替换。
关于上文,可以看到某些方法需要购买和在所述泵上永久安装四个分立传感设备(传感器)。这些设备将要来测量吸入压力、排放压力、温度和流。所以,人们可以断定,所述压力测量设备是典型的压力传感器,而温度设备可以是温度敏感元件,例如电热调节器等等,以及流测量设备也是人们熟知的。在安装和维护这些传感器中所涉及的资本支出是昂贵的,并且很大程度上提高了所述元件的成本。
从而,正如人们能断言的,所述现有技术是昂贵的,并且需要使用附加的传感设备,其被永久安装并且成为所述泵的一部分。
一个解决办法利用一个可变速度驱动(VSD)以用于所述马达。所述驱动必须能够描述所述马达来获得所述马达提供的扭矩以及真实马达运行速度。该特征一般被包含在现在大多数VSD中。还需要安装一个附加的泵传感器(跨所述泵的差分压力、泵排出压力或流)。需要注意,该方法明显具有超过现在使用的现有方法的优点来确定泵性能恶化。与其它一些系统需要四个相反,它只需要一个泵传感器。尽管对它的专有目的非常适合,并且优于现在正在使用的任何设备或例程来确定泵性能恶化,但该解决方法需要知道所述泵的性能,并且该信息必须被输入到所述设备中。逻辑上,每个设备将具有对一个泵唯一的信息。该设备将只正常工作于所述的那个泵,或者最好情况下,所述的那个泵型号和尺寸。为了将所述设备附于其它泵将需要把所述新泵的水力数据编程到所述设备中。
所以本发明的一个目标就是要提供一个改进的方法和装置,以检测一个离心泵的恶化性能,而不需采用额外附加的传感器设备并且无需泵水力信息。

发明内容
用来确定一个离心泵装置的性能恶化的一种系统,所述离心泵装置包括由一个可变速度驱动马达驱动的一个泵。所述系统包括在软件控制下的一个处理器,所述软件包括一个例程以描述相对于一个过程变量设定点的所述泵扭矩和速度。所述软件还包括一个例程来相对所述被描述的泵扭矩和速度对所述泵性能的恶化作测试。


本发明的其它方面、优点以及新颖特征将在考虑附图的同时从下面对本发明的详细描述中变得更加清楚,在所述附图中图1中的示意图表示了根据本发明一个方面由具有一个可变速度驱动的一个马达所驱动的一个离心泵;图2表示了速度对扭矩比的一个基线斜率的计算;图3表示了图2的所述基线斜率与一个测试斜率的比较;图4是一个恶化测试过程的流程图;图5是在进行图4所示过程时的测试数据结果的框图;图6是一个恶化测试过程的可替换流程图;图7是一个可替换示意图,其表示了根据本发明一个方面具有一个可变速度驱动的一个离心泵;以及图8是一个可替换示意图,其表示了根据本发明一个方面具有一个可变速度驱动的一个离心泵。
具体实施例方式
参考图1,其表示有一个典型的离心泵10的一个示意图。所述离心泵10具有一个外壳11,它通过一个中心驱动轴14连接到一个泵马达12。所述泵马达12被连接到一个可变速度驱动16,它反过来被一个处理器18所控制。根据本发明,一个过程变量传感器19被包含到所述离心泵的输出以对至少一个泵参数进行传感。正如本申请剩下部分所要讨论的,所述过程变量传感器是一个用来检测所述泵的排出压力的压力传感器。然而,本领域中熟悉技术的人将理解诸如差分压力或流传感器这样的传感器可以被使用,而不从本发明的原理偏移。
本质上,箭头线20代表了通过所述离心泵10的流体流。所述离心泵提供了一个相对稳定的流。用来实现所需的传送水头的压力被所述流体在旋转叶轮(未示出)中的离心加速度所产生。本领域中熟悉技术的人将理解,所述泵的最优操作是由所述流过程的特性规定的,在此特性,输出压力以及流速被设定来维持所述被驱动材料的液化。换句话说,如果所述压力涉及诸如材料组分或操作温度这样的其它因素变得太高,那么所述材料可能蒸发,导致所述流的恶化,并且可能需要停止所述过程。
期望的压力水平可以通过为所述泵设定一个压力设定点来维持,并且可以被所述可变速度驱动所控制。用于马达控制的可变驱动电路是被人们熟知的,以及,本质上,一个可调变速马达是速度能够被调节的一种马达。存在控制电路,它通过提供一个可变宽度和可变频率的信号来控制所述马达的速度,所述信号例如具有依赖于通过所述马达的电流的一个占空比和一个频率。这样的控制设备被实施为利用电流反馈探测马达速度。这样的电路能够通过改变所述脉宽以及脉冲频率来控制所述马达的速度。
一个可变速度驱动(VSD),也被称为一个可变频率驱动(VFD)或可调速度驱动(ASD),它是一个改变三相感应马达的速度的功率转换设备。所述VSD采用的基本原理是改变它的输出的频率,其随即改变了所述马达的速度。
从节约能源的观点,VSD已经变成构建功率系统中的重要部件。离心泵,以及离心和叶片轴风扇具有可变扭矩负载。驱动所述风扇或泵所需的扭矩正比于所述速度的平方。由于扭矩和马力(hp)按照一个速度的函数彼此相关,所以hp需求正比于所述速度的立方。
该关系指示了,如果所述风扇或泵的速度能够被调制,那么驱动所述风扇或泵的hp就以所述速度的立方增加或减小。所以,一个VSD的使用能够向所述马达仅仅传送在所述期望水平驱动所述负载所需的功率。
如图1所示,有一个处理器18,它本质上可以被包括在所述可变速度驱动电路(VSD)中,并且对马达旋转或扭矩作响应。有利的,正如将要解释的,所述处理器的功能是提供一个装置,所述泵可以通过其被进行恶化测试,而不需对所述处理器预先下载对应所述泵性能历史的数据。
本发明的该过程一般是在被调整来操作所述VSD的处理器的软件形式中,或者在与一个VSD进行信号通信的一个处理器中,所述VSD类型被调整来从一个远程处理器接收指令。此外,所述软件还能够在任何可编程逻辑控制器、计算机或者其它设备,所述这些设备能够测量一个可调整速度驱动(马达、涡轮变速箱等)与泵之间的扭矩和速度,一个过程变量(例如排出压力或流),并且能够改变所述VSD的速度。
参考图2,所述软件在初始启动或在要求启动之后开始,以通过读取和记录一个过程变量(Pv)来描述所述泵的性能,所述过程变量例如压力、驱动器对泵扭矩(Tq)和泵速(Nr)。本说明书全文中使用的扭矩指的是在所述驱动器和泵之间的机械连接中所测量的扭矩。这是在特定的速度间隔进行的,直到所述过程变量设定点已经到达,或者所述马达的最大速度被实现。最少四个数据组被希望以用于充足的泵基线信息;然而,附加的数据组是期望的。例如,图2表示了一个过程变量对扭矩的关系图22,以及过程变量对速度24的关系图(数据点26-32为扭矩,以及,数据点34-40为速度),其中七个数据组从600rpm到大约1800rpm按200rpm的速度间隔被记录。利用从启动的列表数据,曲线拟和例程被用于所述数据来确定一个描述了扭矩和速度数据随过程变量的曲线函数。例如,所述过程变量对扭矩是一个直线函数,其中排出压力是所述过程变量。
Tq=A*Pv+B本领域中熟悉技术的人将理解,当所述过程变量被改变时,其它曲线拟和技术可以被使用。
对于所述过程变量(Pv)对速度(Nr),一个二阶多项式函数被计算,其使用了诸如多项式迭代的多项式曲线拟和技术。
Nr=A*Pv^2+B*Pv+C利用决定了Pv对Tq以及Pv对Nr的所述函数,在所述过程设定点(Pvset)的所述扭矩(Tqset)以及速度值(Nrset)被认为是基数据。同样,在Pvset正/负百分之五处的扭矩值(Tqset@±5%Pvset)以及速度值(Nrset@±5%Pvset)被导出来产生下列基数据表格。
Pvset-5% Tqset@-5%PvsetNrset@-5%PvsetPvset Tqset NrsetPvset+5% Tqset@+5%PvsetNrset@+5%Pvset通过参考图3,扭矩对速度的百分变化(%Tq对%Nr)被绘制出,其使用了用下列关系计算的在Pvset正/负百分之5处的扭矩和速度的百分比变化值%Tqset=(Tqset-Tqset@±5%Pvset)/Tqset*100%Nrset=(Nrset-Nrset@±5%Pvset)/Nrset*100百分比变化高值的坐标(Tqset@+5%Pvset,Nrset@+5%Pvset)42和百分比变化低值的坐标(Tqset@-5%Pvset,Nrset@-5%Pvset)44被绘出,以及延伸于这两点之间的一条基线46被计算。
速度百分比变化除以扭矩百分比变化得到的比值是基线斜率。同样,所述基线与所述y轴的截点48被计算,并且已经被发现一般位于速度百分比变化的零值或附近,所述y轴代表速度百分比变化。对于在一个给定处理设定点的一个给定泵,所述泵具有变化的吸入压力条件(假设可以有足够的净正吸入水头(NPSHa)的条件)和变化的系统条件,所述基线斜率对于一个适当工作的泵被假定不变。
一旦所述初始基线已经被收集,并且通过继续参考图3,所述泵通过抖动所述泵来被周期性的测试恶化程度(速度被提高然后降低到所述设定点值的一个选定的上下百分比),并且扭矩、速度和过程变量数据在所述过程变量设定点以及高和低抖动速度点被收集。被收集的数据示于下表
PvtestLOWTqtestLOWNrtestLOWPvtestSPTqtestSPNrtestSPPvtestHIGHTqtestHIGHNrtestHIGH用于扭矩(Tqset)和速度(Nrset)的基数据被用作参考,来分别按照下列关系计算在所述高和低抖动点的所述测试扭矩和速度的百分比改变%Tqset=(Tqset-TqsetLOW/HIGH)/Tqset*100%Nrset=(Nrset-NrsetLOW/HIGH)/Nrset*100百分比变化高值的坐标(TqsetHIGH,NrsetHIGH)50和百分比变化低值的坐标(TqsetLOW,NrsetLOW)52被绘出,以及延伸于这两点之间的一条基线54被计算。
一个斜率和对所述y轴56的截点被计算以用于所述测试线54。所述测试线的斜率必须在所述基线斜率的θ=5度以内,否则所述数据就被假设在系统或吸入改变中已经获得,并且不是有效的。所述基线y轴截点值与所述测试线y轴截点的值的差别(Δ)是将要决定所述泵是否恶化的值。对于流作为所述过程变量,所述过程传感器是一个流传感器,一般一个Δ=3%或更大的截点代表了一个恶化的泵。当压力被作为所述过程变量,所述过程传感器是一个压力传感器,一般一个Δ=6%或更大的截点代表了一个恶化的泵。上述的百分数能够根据所述整体系统的操作条件来被增加,以识别泵恶化的更高的值。需要注意,如果存在一个新的过程设定点值,那么所述设备需要被命令来重新计算所述扭矩和速度基数据值连同一个新的基线斜率值。这些值是在启动期间从所述列表数据中获得的。然后,所述设备使用所述新设定点值以用于所述过程变量、扭矩和速度,并且在恶化测试中将它们与所述泵的真实扭矩和速度测量相比较。
通过参考图4,一个示例流程图按下文被阐述,其表示了所述处理器相对所述泵、马达和可变速度驱动的操作。所述例程本质上包括两个例程,一个“描述泵”例程以及“恶化测试”例程。所述例程最好在泵操作的开始在步骤60被启动。在步骤62作一个检查,以确定一个启动数据文件是否已经被创建。如果所述文件存在,那么就在步骤64作一个检查,以确定是否已经作出了一个用户请求来获得新的启动数据,如果没有作出请求,那么所述例程就跳过所述“描述泵”例程,然后跳到步骤74。否则,所述例程就在步骤66收集数据来建立一个操作基线。
“描述泵”例程在步骤66,所述例程在规则的预定间隔收集驱动器对泵扭矩(Tq),泵速度(Nr)以及过程变量(Pv)数据。为了说明的目的,所述过程变量是压力,并且所述数据在所述泵速度每提高200RPM的间隔被收集。所述间隔速率必须被设定,从而使得在一般在所述操作速度的至少50%上最好可以收集四个数据组。这是操作速度要么是所述泵的最大速度、要么在所述压力设定点值。关于要测试到最大速度还是所述过程变量设定点的决定可以是一个因应用而具体的决定。例如,当希望保持液化时,可能最好测试到所述过程变量设定点。在完成数据收集后,用来计算相对所述过程变量的扭矩和速度的函数在步骤68通过曲线拟和例程被导出。
在步骤70,利用所述函数来计算扭矩和速度,所述扭矩和速度是作为参考的所述过程变量和所述过程设定点的一个函数,作为参考,一个基数据表被计算。从所述基数据表格,扭矩的百分比变化和速度的百分比变化的值被计算,绘制,并且带有y轴截点48的一个基线46基线斜率如上所述参考图2被得到。继续参考图4,在步骤72,在所述过程变量设定点的速度和扭矩值被存储,以用于“恶化测试”例程。在步骤74,所述例程进入一个DO循环,或者执行其它任务,与此同时等待一个中断信号来指示一个“恶化测试”例程已经被请求或必须被启动。所述“恶化测试”例程可以出现在预定的间隔或者可以由用户手动启动。
“恶化测试”例程在步骤74,所述“恶化测试”例程开始于首先在步骤76进行检查,以确保所述过程变量设定点没有改变。所述过程变量设定点的一个变化会带来一个错误的恶化指示。如果所述过程变量已经改变,那么所述例程返回到步骤70来从所述新过程变量设定点计算新的速度和扭矩值。否则,所述例程继续到步骤78来收集在高和低抖动点的测试扭矩和速度数据,并计算一个平均扭矩和速度值。如果在步骤80,所述平均扭矩和速度值偏离所述扭矩和速度设定点不大于5%,那么所述泵性能就没有充分改变来证实一个恶化评价,并且所述例程回到步骤74。否则,抖动被改变到相对于所述过程变量设定点的速度(Nrset)的高和低值。例如,图4示出了所述高和低值是在所述过程变量设定点的速度的+/-5%。然后,数据在步骤82被收集以用于高、低以及过程变量设定点值处的过程变量(Pvtest)、扭矩(Tqtest)以及速度(Nrtest)。本领域中熟悉技术的人将明白,根据一个特定过程的需要,步骤82的抖动数据收集可以被重复,并且被收集的数据的量可以是根据所述总体系统特性而具体确定的。在收集完所述数据之后,在步骤84,在高和低测试点,通过参考基线值,利用参考上述图2的所述公式,扭矩相对于速度的百分比变化被计算。在步骤86,被收集的测试数据的斜率连同到所述y轴的截点(图3)被计算。继续参考图4,在步骤88,所述测试斜率对所述基线斜率被作检查,以及,如果所述差别大于θ=5度,那么系统或吸入改变就被假设已经发生,所述数据无效,并且所述例程返回到步骤74。否则,如果所述数据是有效的,那么所述基线和测试线对所述y轴的截点就在步骤90被比较。如果当所述过程变量是流时,所述基线和所述测试线的y轴截点差别大于Δ=3%,或者当所述过程变量是压力时,所述差别大于Δ=6%,那么泵恶化就被假设已经发生,并且在步骤92一个警告或报告就被产生给所述用户。给定所述基线斜率对y轴的截点在零或其附近,该计算可以通过计算所述测试斜率在y轴的截点距离零的差别来得到简化,而没有流和压力百分比差值阈值的任何改变。需要注意,在泵恶化被认为一般不重要的系统中,所述百分比差值可被提高,或者可以根据总体系统操作参数来改变。如果没有发现恶化,那么所述扭矩和速度设定点就被设定到在步骤94获得的扭矩和速度的平均值,并且所述例程返回步骤74。
示例结果通过参考图5,利用一个压力传感器作为所述过程变量的一个恶化VSD泵的示例结果在图4的软件例程的不同阶段被得出。所述“描述泵”例程从“A”所代表的地方开始,并且所述例程确定了测量要被进行,所述表格96代表了在启动过程中测量的Pv、Tq和Nr值,其中数据从600到~1800rpm按200rpm的增量在步骤66(图4)被记录。然后,所述结果在步骤68(图4)通过曲线拟和例程被处理。图表98(图5)代表了所述曲线拟和例程的结果,其确定了定义速度100和扭矩102相对于压力的函数。所述扭矩和速度线利用传统的曲线拟和技术被计算。在步骤70(图4)计算的所述基数据表格102被示于框106,其中所述压力设定点108被定义为75psi,并且压力的正/负百分之5的值分别为78.8和71.3。作为所述过程变量设定点函数的扭矩(Tqset)和速度(Nrset)的值110、112,以及所述过程变量的正或负百分数同样被记录在所述表格中。然后,从该数据,表示了扭矩116和速度118的百分比差别的表格114在步骤70(图4)从下列公式被计算%Tqset=(Tqset-Tqset@±5%Pvset)/Tqset*100%Nrset=(Nrset-Nrset@±5%Pvset)/Nrset*100对所述压力设定点正/负百分之5的扭矩和速度的百分比差别被绘制120、122,并且一条基线124被画在所述两点之间。然后,所述基线斜率以及y轴截点126被计算。
在所述“恶化测试”例程中,所述压力测量被进行在所述值为75psi的压力设定点130,以及在所述压力设定点值的正/负百分之5的抖动率处。由于抖动被描述在速度的正/负百分之5,所以这些结果与图4流程图步骤82稍有不同。读者将会理解,过程变量、扭矩或速度的任何测量结果都可以在数据收集中被用来确定高和低抖动点,而不从本发明偏离。所述被收集的数据被制成表132,然后被用来在步骤84(图4)从下列公式确定扭矩134和速度136的百分比差别
%Tqset=(Tqset-TqsetLOW/HIGH)/Tqset*100%Nrset=(Nrset-NrsetLOW/HIGH)/Nrset*100对高和低测量值的扭矩和速度的百分比差别被绘制138、140,以及一条测试线142被画在所述两点之间。然后,所述基线斜率和y轴截点144在步骤86(图4)被计算。在本例中,所述基线斜率的差别在步骤88(图4)低于θ=5度,但所述y轴截点146的差别(Δ)在步骤90(图4)被发现高于6%,从而所述例程将在步骤92(图4)报告148所述泵已经恶化。
如图2、3和5所示的数据可以自动获取或存储在每个泵的处理器的存储器中。读者将理解,手动配置所述处理器来操作一个特定泵的成本已经被去除。所述技术能够被用作任何类似泵设备的冗余检查,从而进一步减少了由错误或未连接传感器所产生的错误报警。
通过参考图6,一个可替换实施例的流程图如下被阐述,其表示了所述处理器相对所述泵、马达以及可变速度驱动的操作。与图4的流程图类似,图6所示的例程包括两个例程,也就是一个“描述泵”例程以及“恶化测试”例程。该可替换例程在所述“描述泵”例程中提供了不同的数据收集例程,并且允许所述用户选择性的将该特性关闭。所述例程最好在步骤150在泵操作的开始处启动。在步骤152作一个检查,以确定所述用户是否已经将泵恶化选择为一个选项。所述用户选择可以是一个标记的形式,或者其它传统的编程开关。在一个实施例中,所述用户可能被请求来输入一个泵恶化的百分数,其被作为应用于其中包含泵的系统的一个具体阈值。如果所述恶化选项没有被选择,那么所述例程就中止在步骤154。否则,一个小时计变量就在步骤156被设定,以建立“恶化测试”例程之间的时间间隔。该变量可以由所述用户输入,或者可以是所述软件提供的一个默认值。在步骤158作一个检查来确定一个启动数据文件是否已经被建立。如果没有文件存在,那么所述例程就跳到步骤162。否则,如果所述文件存在,那么就在步骤160作一个检查,以确定是否已经作出了一个获得新启动数据的用户请求,如果没有作出请求,那么所述例程就跳过所述“描述泵”例程,并且跳到步骤168。否则,所述例程就在步骤162收集启动数据来建立一个操作基线。
“描述泵”例程在步骤162,所述例程将所述马达速度稳定在最大速度的25%,其中安装在系统中的VFD的最大速度一般被设定为运行所述泵的系统参数所能忍受的最大速度。然后,所述例程测量并记录所述过程变量(Pv)、速度(Nr)以及驱动器对泵扭矩(Tq)。然后,所述速度被增加所述最大速度的15%,并且所述测量被重复。这一流程被重复到在所述最大速度的100%作出测量为止。读者将理解,该数据收集方法允许所述例程在不考虑最大速度变化的情况下每次收集六个测量。图4的例程依赖于诸如200rpm这样的恒定值来提高速度,并且,对于低最大速度,其会有收集少于四个测量的危险。这一个问题在图6的本实施例中已经被消除。在完成数据收集后,在步骤164对每个数据组,所述扭矩和速度被分别对所述收集的过程变量数据制表。
在步骤166,利用所述函数来计算扭矩和速度,所述扭矩和速度是作为所述过程变量和所述过程设定点的一个函数,作为参考,一个基数据表被计算。然后,扭矩百分比变化关于速度值百分比变化的关系被计算、绘制,并且一个基线46、基线斜率与y轴48截点按照上文参考图2所描述的被获得。所述基数据以及基线信息被存储,以用于所述“恶化测试”例程。在步骤168,所述例程进入一个DO循环,或者执行其它任务,并且等待一个中断来指示逝去时间等于或大于所述小时计变量中所定义的时间间隔。在完成所述循环或者在接收到一个中断信号后,所述“恶化测试”例程就被启动。
“恶化测试”例程一旦所述处理已经在步骤168触发了所述“恶化测试”例程,那么所述“恶化测试”例程就首先在步骤170检查来确保所述过程变量设定点没有改变。过程变量设定点的一个改变将提供恶化已经发生的一个错误指示。如果所述过程变量已经改变,那么所述例程返回到步骤166来用新的过程变量设定点(Pvset)计算新的速度(Nrset)和扭矩(Tqset)的值。否则,所述例程继续到步骤172来收集在所述过程变量设定点的扭矩和速度数据,并且一个平均速度值被确定。然后,所述泵在所述平均速度值的±百分之5抖动。所述过程变量(Pvtest)、扭矩(Tqset)和速度(Nrtest)在三个速度被测量,所述三个速度也就是所述过程变量设定点平均速度、百分之+5的平均速度(高)和百分之-5的平均速度(低)。在步骤174,通过参考在高和低测试点的基线值,利用上述公式,扭矩相对于速度数据的百分比变化被计算。然后,所述高和低测试点被绘制以建立一条测试线,并且所述测试线的斜率连同对y轴的截点(图3)一起被计算。继续参考图6,在步骤176对所述测试线斜率到基线斜率作一个检查,如果在步骤178所述差别(Δ)大于5度(20%),那么系统或吸入改变就被假设已经发生,所述数据无效,并且在步骤180所述小时计变量被复位,以及所述例程返回到步骤168。否则,如果所述数据是有效的,那么所述基线和测试线的y轴截点差别就在步骤182被计算。如果当所述过程变量是流,所述差别离开所述设定点大于Δ=3%,或者当所述过程变量是压力,所述差别离开所述设定点大于Δ=6%,那么一个10%的泵恶化就被假设已经发生,并且一个警告或报告在步骤184被产生给所述用户。这里在步骤184所给的值对末端抽入类型泵是典型的。需要注意,在泵恶化被一般认为不重要的情况下,所述百分比差别可以被提高,或者根据总体系统操作参数来变化。否则,所述小时计变量在步骤180被复位,并且所述例程返回到步骤168。
参考图7,一个可替换实施例被表示,其中所述处理器18可以被置于所述泵装置的远程地点,所述泵装置具有一个泵10、马达12以及可变速度驱动16,其中所述处理器18与所述可变速度驱动之间进行由线190代表的信号通信。所述信号通信装置190可以包括一条数据电缆或无线通信,以及通过一条电话线的远程拨入通信。
参考图8,一个可替换实施例被表示,其中所述处理器18可以被置于多个泵装置的远程地点,所述多个泵装置具有一个泵10、马达12和可变速度驱动。所述处理器18与每个所述泵装置之间进行由线192-194代表的信号通信。读者将理解,所述处理器可以被用来对每个泵进行恶化测试,其通过自动获取泵操作特性来实现而无需手动输入数据。所述信号通信装置可以包括上文对图7讨论的装置的任何组合,或者后来想到的其它信号通信装置。
尽管本发明已经通过实施例来得到描述,但它不被限制于此。而是所附的权利要求应该被广义理解,来包括本发明的其它变化和实施例,这可以由本领域熟悉技术的人来完成,而不偏离本发明等价的范围和领域。
权利要求
1.由一个处理器实施的、确定一个离心泵装置性能恶化的一种方法,所述离心泵装置具有一个泵,所述泵被带有一个可变速度驱动的马达所驱动,所述方法包括步骤在泵启动后,自动描述相对于一个过程变量设定点的所述泵扭矩和速度;以及相对于所述被描述的泵扭矩和速度,对所述泵性能的恶化作测试。
2.权利要求1所述的方法,其中所述描述步骤在所述泵的启动之后开始。
3.权利要求1所述的方法,其中所述描述步骤包括测量泵扭矩、速度以及至少一次过程变量来获得一个数据组的步骤。
4.权利要求3所述的方法,其中所述测量步骤被重复。
5.权利要求3所述的方法,其中所述测量步骤至少被重复三次。
6.权利要求5所述的方法,其中测量步骤在泵速的等值增大变化时被重复。
7.权利要求1所述的方法,其中所述描述步骤包括确定相对于所述过程变量设定点的一个扭矩和速度设定点。
8.权利要求1所述的方法,其中所述过程变量从包括压力和流的组中被选择。
9.权利要求1所述的方法,其中所述测试步骤包括抖动所述泵。
10.权利要求9所述的方法,其中所述测试步骤包括在抖动期间测量泵扭矩和速度,并且比较所述被测量的扭矩和速度与被描述扭矩和速度以确定恶化。
11.权利要求9所述的方法,其中所述测试步骤包括在抖动期间测量泵扭矩和速度,并且将相对于被描述速度和扭矩的被测量速度对扭矩的一个百分比变化与被描述速度对扭矩的一个百分比变化相比较,以确定恶化。
12.用来确定一个离心泵恶化的一种方法,所述方法独立地利用与所述泵相关的水压信息,所以就独立于所述泵,所述方法包括步骤通过在所述泵的启动期间在规则的间隔测量和记录泵扭矩、泵速和所述过程变量,来自动描述相对于一个过程变量设定点的所述泵扭矩和速度,并且从所述被记录的泵扭矩、泵速和过程变量,确定在所述过程变量设定点的一个泵扭矩和速度;以及当进行抖动所述泵的操作时,通过测量和记录泵扭矩和速度以及所述过程变量,相对于所述被描述的扭矩和速度对所述泵的性能作恶化测试,以及,在完成所述泵的抖动后,将抖动中的所述被记录的泵扭矩和速度与所述被描述的扭矩和速度相比较,以确定恶化。
13.用来监控具有一个可变速度驱动马达的泵装置的一个设备包括传感器,所述传感器被用来监控泵速度、扭矩以及至少一个过程变量;一个处理器,所述处理器与所述传感器和所述可变速度驱动马达进行信号通信;软件,所述软件被所述处理器用来在泵启动时相对于一个操作阈值描述泵扭矩和速度。
14.权利要求13所述的设备,其中所述软件还被调整来相对所述被描述的泵扭矩和速度对所述泵性能作恶化测试。
15.权利要求13所述的设备,其中所述操作阈值是一个过程变量设定点。
16.权利要求13所述的设备,其中所述操作阈值是一个过程变量阈值,其被从包括压力和流的所述组中选出。
17.权利要求13所述的设备,其中所述处理器被包括在所述可变速度驱动马达中。
18.权利要求13所述的设备,其中所述处理器位于所述泵装置的远程位置,并且通过通信装置被连接。
19.权利要求13所述的设备,其中所述处理器被连接到多个泵装置。
20.权利要求14所述的设备包括用来报告泵恶化的装置。
全文摘要
一个用来确定一个离心泵装置是否恶化的装置,所述恶化是指工作在可接受的操作极限以外,以及包括一个处理器,其被软件调整来进行在预定的操作水平自动描述所述泵的特征的步骤,以及利用所述自动获取的泵特征进行恶化测试的步骤。
文档编号G06F19/00GK1777738SQ200380109326
公开日2006年5月24日 申请日期2003年12月17日 优先权日2002年12月20日
发明者尤金·P·萨宾尼, 耶罗默·A·洛伦茨 申请人:Itt制造企业公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1