专利名称:基于轮廓波Contourlet变换的图像去噪方法
技术领域:
本发明属于图像处理技术领域,具体地说是一种基于轮廓波Contourlet变换的图像去噪 方法,涉及该技术在图像去噪领域的应用。
背景技术:
图像降噪是图像预处理中一项应用比较广泛的技术,其作用是为了提高图像的信噪比, 突出图像的特征。在过去的二十年里,人们提出了很多去噪方法,主要分为以下四类, 一类 是经典的滤波器方法,其处理思想是采用各种平滑函数对图像进行巻积处理,从而达到去除 噪声的目的。这些方法都是通过固定的窗口对图像操作,并没有考虑像素周围的结构信息, 所以难以保留较多的图像细节。
第二类是基于小波域的统计信号处理方法,主要的方法有小波域隐马尔可夫模型和小波 域高斯模型。小波域隐马尔可夫模型能精确地描述信号小波系数的统计相关性和非高斯性, 在图像处理中得到了很好地发展和广泛应用。小波域高斯模型则对小波分解后的系数分布进 行处理。这些方法在处理图像系数的尺度关系上具有很好地效果,但它并没有考虑图像像素 本身具有的几何特性。
第三类是基于多尺度小波的方法,利用多尺度随机过程对小波图像系数进行建模,通过 阈值和邻域的判断对系数估计,达到平滑效果。但这种方法易造成图像边缘的损失,在保持 图像细节方面效果并不理想。
第四类是基于迭代滤波器的方法,通过引入局部邻域模型来描述图像细节特征。如迭代 结构滤波器等,经过多次滤波,利用几何模板将图像的局部信息向全局范围传递,对图像的 细节信息有一定的保留。但这种方法引入的邻域模型还不够真实,计算复杂。
总体上说来,现有的方法大都没有利用图像的几何特性,虽然对噪声的去除有一定的效 果,但不能同时兼顾去噪和保持图像细节两方面要求。如何构造一种既能降低图像噪声又能 保持图像细节的降噪方法是目前亟待解决的问题。
发明内容
本发明的目的在于克服已有技术的不足,即在降低图像噪声的同时会破坏图像的细节,
4提出一种基于轮廓波Contourlet变换的图像去噪方法,本方法充分利用了 Contouriet可以捕获 图像的方向性信息这一特点,使得去噪后的图像保留了更多的细节信息,并消除了大部分易 在去噪后图像中产生的方向性条纹。
本发明的技术方案是首先对含噪图像进行循环平移,得到多幅含噪图像的平移图像,然 后对这些平移图像分别进行轮廓波Contourlet变换,并优化轮廓波Contouriet变换系数,接着 对优化过的轮廓波Contourlet系数作Contourlet逆变换,得到多幅含噪图像去噪后的平移图像, 再将这些图像作逆向循环平移,然后进行平均,得到含噪图像最终的去噪图像。本发明技术方 案的具体实现过程如下
(1) 、设置输入含噪图像的最大循环平移步数,用轮廓波Contouriet变换将输入含噪图像分 解为K层,则输入含噪图像所有像素在行及列向上最大循环平移步数为K,初始化输入含噪图 像行向或列向的实际循环平移步数,令k二l;
(2) 、将输入含噪图像/(Jc,;y)向行或列向循环平移k步,得到/t(:c,力;
(3) 、对步骤(2)得到的图像/,(;c,力进行轮廓波Contourlet变换;
(4) 、通过阈值方法优化图像A(jc,;k)的轮廓波Contourlet变换系数;
(5) 、对优化过的Contourlet变换系数作轮廓波Contourlet逆变换,得到/,(jc,力去噪后的图
(6) 、将y;(;c,力去噪后的图像/,(;c,力逆向循环平移k步,即向与步骤(2)相反的方向循环平 移k步,得到图像&0c,y);
(7) 、 ifc-Jk+1,如果itsK,转步骤(2),否则转步骤(8);
(8) 对所有循环平移后的图像g,Oc,y)用算式》(JC,y)-ixggi(;c,;y)进行平均,得到最终
输入含噪图像的去噪图像》(:c,力,式中1'=1^2,..丄。
上述的基于轮廓波的图像去噪方法中,所说的将输入含噪图像/Oc,;y)向行或列向循环平 移k步,是针对图像所作的一种操作,旨在消除去噪后图像上所产生的伪吉布斯现象,假设 输入含噪图像的大小为MXN,经过循环平移操作得到的图像/t(JC,力可以用下式描述
上述的基于轮廓波的图像去噪方法中,所说的通过阈值方法优化图像y;(jc,力的轮廓波
Contourlet变换系数,是针对Contourlet变换系数中的高频方向子带的系数进行的,其优化方法的步骤如下
(1) 、估计Contourlet变换系数每个尺度上的方向子带的噪声标准偏差,其中 =A/ed/fl"(|。 -Me^a"(。)|)/0.6745 , MeAfl"(。)为尺度_/内所有子带系数。的中值;
(2) 、分别求出各个像素在Contouriet变换系数的不同尺度中所有方向子带的系数的均值mean值及最大值max,用下式的阈值方法将其归类-
如果鹏fl" 2 ;ur,则。为清晰边缘的Contourlet变换系数如果 meow <义cr, max 2又<7 , 则。为弱边缘的Contourlet变换系数如果 鹏做< Aa,max <义a,则。为噪声的Contourlet变换系数
这里,A是权重参数,;ie[i^;
(3) 、根据闳值类别对Contourlet变换系数进行优化,保留清晰边缘和弱边缘的系数,将
噪声的系数置零。
上述的基于轮廓波的图像去噪方法中,所说的将去噪后的图像A(x,y)向与图像/,0c,力)相反的方向循环平移k步,得到图像g,(x,y)用下式描述-
本发明与现有的技术相比具有以下特点
① 本发明利用了轮廓波Contourlet可以捕获图像的方向性信息这一特点,通过阈值方法区分出了噪声图像中的边缘与噪声,在有效抑制噪声的同时,还能较好地保留图像细小的纹理及边缘信息;并消除了大部分易在去噪后图像中产生的方向性条纹。
② 本发明通过对含噪图像进行循环平移处理,有效地消除了去噪后图像上所产生的失真。
③ 通过实验对比采用Contourlet硬阈值去噪方法CT,小波与循环平移结合的去噪方法WT-CS, Contourlet与循环平移结合的去噪方法CT-CS和本发明提出的去噪方法DCCS对Lena图像在不同噪声水平下去噪后的峰值信噪比PSNR值的比较结果,可以看出,本发明的去噪方法的PSNR值是最高的。
图1是本发明方法的流程图
图2是本发明对噪声水平为3的Lena图像的去噪结果局部放大比较3是本发明对噪声水平为1的Barbara图像的去噪结果比较图参照图1的流程图,实现本发明基于轮廓波Contouriet的图像去噪方法,首先要设置输入含噪图像的最大循环平移步数,采用Contouriet变换将输入含噪图像分解为K层,则输入含噪图像所有像素在行及列向上最大循环平移步数为K,初始化输入含噪图像行向或列向的实际循环平移步数k:l,现将各个步骤具体实施方式
加以说明。
1、 将输入含噪图像/Oc,力向行或列向循环平移k步
应用传统的小波变换或者是轮廓波Contouriet变换虽然能够比较有效的去除噪声,但是有的时候却会给图像带来视觉失真现象。在图像邻域或是不连续点出现的这种失真现象称之为伪吉布斯现象,该现象出现的原因就是由于系统不具备移不变性,抑制这种失真现象的一种十分有效的方法就是循环平移。
假设输入含噪图像的大小为MXN,经过循环平移操作得到的图像/t(;c,y)可以用下式描
述
" ""'/(JC + )t-M,y+A:-iNOAf-it "sM,W-"y sW
2、 对经过循环平移操作得到的图像/J;c,y)进行轮廓波Contourlet变换
轮廓波Contourlet变换是一种新的能有效处理图像光滑轮廓的多尺度几何分析工具,它对图像的线奇异性有了很好的刻画。
(1) 、首先将图像/;Oc,y)作拉普拉斯塔式多尺度分解;
(2) 、在每个尺度上,方向滤波器组将拉普拉斯塔式分解后得到的带通信号划分为2的任意次幂个数目的方向子带,方向子带的数目可以预先设定;
3、 通过阈值方法优化图像/;Oc,y)的轮廓波Contourlet变换系数
通过阈值方法优化图像/*0c,y)的Contourlet变换系数,是针对Contourlet变换系数中的高频方向子带的系数进行的,其优化方法步骤如下
(1) 、估计Contouriet变换系数每个尺度上的方向子带的噪声标准偏差,其中<j, -Merf!'朋(l。 -Merfffl"(。)|)/0.6745 , Afe力a"(c,.)为尺度j'内所有子带系数。的中值;
(2) 、分别求出各个像素在Omtouriet变换系数的不同尺度中所有方向子带的系数的均值mean值及最大值max,用下式的阈值方法将其归类《
如果附训e;ur ,则。.为清晰边缘的Contourlet变换系数如果 mean < A<7, max 2 Aa , 则。为弱边缘的Contourlet变换系数如果 鹏an < Acr,max <, 则。为噪声的Contourlet变换系数
这里,a是权重参数,;lg[i^];
(3)、根据类别对Contourlet变换系数进行优化,保留清晰边缘和弱边缘的系数,将噪声的系数置零。
4、 对优化过的Contourlet变换系数作Contourlet逆变换,得厶(jc,力去噪后的图像义(;c,力轮廓波Contourlet变换是一种新的能有效处理图像光滑轮廓的多尺度几何分析工具,它对
图像的线奇异性有了很好的刻画。
(1) 、首先将优化后的Contouriet变换系数中的方向子带系数通过方向滤波器进行多尺度重构;
(2) 、在每个尺度上,用拉普拉斯塔式重构得到去噪后的图像/,(:c,y)。
5、 将AO:,y)去噪后的图像/j;c,;v)逆向循环平移k步
将/;(:c,y)去噪后的图像/tOc,:y)逆向循环平移k步,得到图像g,(jc,y),其过程可以用下式描述
本发明用Lena和Barbara作为测试图像,将本发明所提出的去噪方法DCCS与使用小波硬阈值去噪方法,小波与循环平移结合的去噪方法WT-CS,和采用Contourlet硬阈值去噪方法CT, Contourlet与循环平移结合的去噪方法CT-CS进行比较。
图2给出了噪声水平为3时的Lena图像的去噪结果局部放大比较图,图2(a)为Lena图像的局部图,图2(b)为噪声水平为3时的Le加图像局部放大图,图2(c)为使用小波硬阈值去噪方法对噪声水平为3的Lena图像去噪结果局部放大图,图2(d)为采用Contourlet硬阈值去噪方法对噪声水平为3的Lena图像去噪结果局部放大图,图2(e)为采用小波与循环平移结合的去噪方法对噪声水平为3的Lena图像去噪结果局部放大图,图2(f)为采用Contourlet与循环平移结合的去噪方法对噪声水平为3的Lena图像去噪结果局部放大图,图2(g)为本发明所提出的去噪方法对噪声水平为3的Lena图像去噪结果局部放大图。
图3给出了噪声水平为1时的Barbara图像的去噪结果比较图,图3(a)为Barbara图像,
8图3(b)为噪声水平为1时的Barbara图像,图3(c)为使用小波硬阈值去噪方法对噪声水平为1的Barbara图像去噪结果图,图3(d)为采用Contourlet硬阈值去噪方法对噪声水平为1的Barbara图像去噪结果图,图3(e)为采用小波与循环平移结合的去噪方法对噪声水平为1的Barbara图像去噪结果图,图3(f)为采用Contourlet与循环平移结合的去噪方法对噪声水平为1的Barbara图像去噪结果图,图3(g)为本发明所提出的去噪方法对噪声水平为1的Barbara图像去噪结果图。从图2和图3的实验对比图像可以看出,本发明的去噪效果较其他几种方法,细节保持能力更强,并且消除了大部分的方向性的条纹,综合去噪性能更好。
本发明在Contourlet变换中采用经典的'9-7'拉普拉斯塔形分解和pkva方向滤波器组,由细尺度到粗尺度方向子带的分解数目为32, 16, 8, 4, 4。表1给出了采用Contourlet硬阈值去噪方法CT,小波与循环平移结合的去噪方法WT-CS, Contourlet与循环平移结合的去噪方法CT-CS和本发明提出的去噪方法DCCS对Lena图像在不同噪声水平下去噪后的峰值信噪比PSNR值的比较结果。可以看出,本发明提出的方法的PSNR值是最高的。表1 Lena图像在不同噪声水平下去噪后的PSNR值的比较
PSNR(db) Noise CT WT-CS CT-CS DCCS
Image
Noise levd=l14.5624.6325.2326.0926.96
Noise level=220.5827.7228.9129.1930.18
Noise levd=324.1129.6131.0331.0431.73
通过实验结果可以看出,对包括许多线段或类似结构的图像,例如Barbara图像,Contourlet去噪后的效果要明显优于小波,也比小波保留了更多的纹理信息。这是由于小波变换在对图像的进行二维的可分离分解的时候,首先对图像进行一维的小波分解,再对一维分解后的分量进行一维小波分解,分别得到了LL,LH,HL,HH的四个分量部分,其对应的高频部分是HLLH,HH三部分,分别对应图像的基本水平方向,基本竖直方向和对角线方向的高频信息。这样,小波在对图像进行可分离变换的一维情况下,每一次变换和对一维信号的处理方式是一样的,只是对信号的点的奇异性敏感。而对于图像的这种二维信号来说,大量的信息存在于图像的纹理,边缘的地方,而这些信息表现在图像上面的时候,具有多尺度性,各向异性等特点。在对图像进行阈值去噪的时候,用小波变换对图像进行处理的时候,由于它的高频部分只是包含了图像的水平方向,竖直方向和对角线方向的信息,这样在变换之后,在这0°,±45°,90°方向的纹理,边缘信息的系数具有了较大的变换的数值,在其他方向上变换
9的系数则变得很小,这样,在进行阈值去噪的时候,很多方向的纹理信息的系数由于这种可分离小波变换的局限性而变的很小和分解后的噪声系数混淆在一起。阈值化后,这些系数被清为零,失去了很多细节的纹理信息。而这种在方向上的纹理信息正是图像中的很重要的信息。
Contourlet变换保持了小波变换对图像进行多尺度分解的特点,可以在各个不同的尺度对图像进行处理,这样使得可以像小波一样对图像的细节信息进行处理。同时,Contourlet变换克服了小波变换对于图像方向信息划分粗略的缺点,可以对图像的高频部分进行方向信息的分解,它可以把图像的高频部分分解成2的任意次幂个方向的分量。这样,Contourlet变换对于图像的纹理细节有很好的刻画。
但是使用Contourlet硬阈值去噪后,图像中会留下很多方向性的条纹,不但影响了图像的视觉效果,而且会丢失图像中的一些细节信息。这是因为阈值处理是通过直接对信号进行截断来恢复原始信息,所以依然存在自身的缺陷。而且由于用Contourlet不具备移不变性,去噪后的图像中存在着伪吉布斯现象,结合循环平移后则可以在很大程度上去除这种现象。
本发明提出的方法不但将Contourlet变换与循环平移相结合,更充分利用了 Contourlet可以捕获图像的方向性信息这一特点,保留了图像中更多的细节信息,并消除了大部分的方向性的条纹。
10
权利要求
1、一种基于轮廓波Contourlet变换的图像去噪方法,其特征在于首先对含噪图像进行循环平移,得到多幅含噪图像的平移图像,然后对平移图像进行轮廓波Contourlet变换并优化轮廓波Contourlet变换系数,接着对优化过的轮廓波Contourlet系数作Contourlet逆变换,得到多幅去噪后的平移图像,再将去噪图像作逆向循环平移,最后进行平均,得到含噪图像最终的去噪图像;其具体实现步骤如下(1)设置输入含噪图像的最大循环平移步数,用轮廓波Contourlet变换将输入含噪图像分解为K层,则输入含噪图像的像素在行和列向上最大循环平移步数为K,初始化输入含噪图像行或列向的实际循环平移步数,令k=1;(2)将输入含噪图像f(x,y)在行或列向循环平移k步,得到图像fk(x,y);(3)对图像fk(x,y)进行轮廓波Contourlet变换;(4)通过阈值方法优化图像fk(x,y)的轮廓波Contourlet变换系数;(5)对优化过的Contourlet变换系数作轮廓波Contourlet逆变换,得到fk(x,y)去噪后的图像(6)将去噪后的图像逆向循环平移k步,得到图像gk(x,y);(7)令k=k+1,如果k≤K,转步骤(2),否则转步骤(8);(8)对所有循环平移后的图像gi(x,y)用算式进行平均,得到最终输入含噪图像的去噪图像式中i=1,2,...K。
2、 根据权利要求l所述的基于轮廓波Contouriet变换的图像去噪方法,其特征在于所说的将输入含噪图像/(义,力循环平移k步旨在消除去噪后图像所产生的伪吉布斯现象,假设输入含噪图像的大小为MXN,经过循环平移操作得到的图像/"x,;y)用下式描述
3、 根据权利要求l所述的基于轮廓波Contourlet变换的图像去噪方法,其特征在于所说的通过阈值方法优化图像A(;c,:v)的轮廓波Contourlet变换系数,是针对Contourlet变换系数中的高频方向子带的系数进行的,其优化方法的步骤如下《(1) 、估计轮廓波Contouriet变换系数每个尺度上的方向子带的噪声标准偏差^.,其中= Me^flw(|c; -MeAa/i(。)|)/0.6745 , Afed/a"(c》为尺度j'内所有子带系数。的中值;(2) 、分别求出各个像素在轮廓波Contouriet变换系数的不同尺度中所有方向子带系数的均值mean值及最大值max,用下式的阈值方法将其归类如果;nean 2 Act ,则。为清晰边缘的Contouriet变换系数如果 /nea/i < Acr, max 2 Ao", 则。为弱边缘的Contouriet变换系数如果 mean < Acr, max < Ao", 则。为噪声的Contouriet变换系数式中,A是权重参数,AE[1^5];(3) 、根据上述阈值类别对轮廓波Contouriet变换系数进行优化,保留清晰边缘和弱边缘的系数,将噪声的系数置零。
4、根据权利要求l所述的基于轮廓波Contouriet变换的图像去噪方法,其特征在于所述去噪后的图像/t (x, y)逆向循环平移k步,得到的图像gt (:c, y)用下式描述
全文摘要
本发明公开了一种基于轮廓波Contourlet变换的图像去噪方法,属于图像处理领域。该方法的实现过程为首先对含噪图像进行循环平移,得到多幅含噪图像的平移图像,然后对这些平移图像分别进行Contourlet变换并优化Contourlet变换系数,接着对优化过的Contourlet系数作Contourlet逆变换,得到多幅含噪图像去噪后的平移图像,再将这些图像作逆向循环平移,然后进行平均,得到含噪图像最终的去噪图像。本发明利用轮廓波Contourlet可以捕获图像的方向性信息的特点,通过阈值方法区分出噪声图像边缘与噪声,在有效抑制噪声同时,较好保留图像细小的纹理及边缘信息,通过对含噪图像进行循环平移处理,有效消除去噪后图像上所产生的失真。通过与几种去噪方法对比,本发明的去噪方法PSNR值最高,去噪效果最好。
文档编号G06T5/00GK101477679SQ200910020948
公开日2009年7月8日 申请日期2009年1月16日 优先权日2009年1月16日
发明者彪 侯, 芳 刘, 玉 夏, 霞 常, 焦李成, 爽 王, 丹 闫 申请人:西安电子科技大学