钙化血管的分割的制作方法

文档序号:6547604阅读:209来源:国知局
钙化血管的分割的制作方法
【专利摘要】本发明涉及一种用于在图像数据中分割钙化的血管的方法。该方法包括步骤:提供该血管的血管树表示,提供该血管的多个横截面的多个初步边界表示,提供在所述多个横截面中的图像数据中的多个强度一概图,基于强度一概图确定横截面中的钙化,将每个初步边界表示校正为校正的边界表示,其排除了来自于血管内部的钙化。本发明还涉及一种用于该目的的分割系统。
【专利说明】钙化血管的分割

【技术领域】
[0001]本发明涉及一种用于分割图像数据中的钙化血管的方法。本发明还涉及一种用于 该目的的分割系统。

【背景技术】
[0002] 据美国心脏协会称,冠状动脉疾病(CAD)是导致西方世界死亡的主要原因。对于 CAD的当前诊断标准是通常的介入血管造影(ICA),其涉及相当大的风险和成本。新型心脏 计算机断层成像(CT)扫描仪使得能够采集具有前所未有的质量的冠状动脉CT血管造影 (CCTA)。在CCTA中可以以高的灵敏度探测到冠状动脉狭窄,这允许该方法被用作为诸如 ICA的介入诊断和外科过程的守卫。
[0003] 用于在CCTA中自动探测冠状动脉狭窄的方法已经被提出用于临床试验。近年来, CCTA也已经被提出用于仿真沿着冠状动脉狭窄的压力分布和用于计算所谓的冠脉血流储 备分数(FFR),其表示了局部缺血导致的损害。冠状动脉狭窄的自动探测以及其血液动力学 相关度的仿真(即冠状动脉内的压力下降的基于仿真的探测)取决于在提供的图像数据中 的冠状动脉腔的精确分割。这是一项具有挑战性的任务,因为冠状动脉比较小(在其远端 部分中仅延伸至在图像数据中的一些体素)而CCTA图像体积的质量又是变化的(特别地 与噪声、伪影、对比度均匀性等有关)。精确的分割是更复杂的,因为脉管腔的对比度仅稍微 地高于未钙化斑块的对比度和低于钙化斑块的对比度。因此,未钙化斑块在视觉上看起来 与脉管的背景非常相似,特别是在对比度增强的图像采集过程中。另一方面,钙化斑块在这 样的对比度增强的图像采集过程中看起来是脉管腔的部分,因为它们在图像数据中显示了 与造影剂大约相同的外观。因此,在钙化斑块和血液能够流通的血管腔之间的区分是很难 作出的。


【发明内容】

[0004] 由此本发明的目的是提供一种提高的可能性,用于在图像数据中分割钙化的血 管。
[0005] 该目的通过按照本发明的方法和按照本发明的分割系统实现。
[0006] 按照本发明,上面提到的方法包括步骤:
[0007] -提供血管的血管树表示。
[0008] 这样的血管树表示例如可以包括血管(树)的多个走向线,诸如中线等。
[0009] -提供血管的多个横截面的多个初步边界表示。这样的初步边界表示例如可以包 括横截面的边界图。
[0010] -提供在多个横截面中在图像数据中的多个强度一概图(intensity profile)。强 度一概图表示了横截面中图像数据的强度并且由此取决于用于图像数据采集的采集方法。 例如,在CT中,强度一概图基于(即对应于)图像数据中的豪恩斯菲尔德单位值。
[0011] -基于强度一概图确定横截面中的钙化。强度一概图现在被用于探测钙化,例如钙 化斑块。
[0012] -将每个初步边界表示校正为校正的边界表示,其排除了来自于血管内部的钙化。
[0013] 在该上下文中,可以注意到,图像数据可以是虚拟的任何医学图像数据,特别是断 层成像图像数据。它们可以包括二维和/或三维和/或四维图像数据(在此其一个维度可 以是时间的维度,其提示了图像数据包括随时间移动的图像)。
[0014] 根据本发明,上面提到的分割系统包括以下单元:
[0015] -用于图像数据的输入接口。经由该接口将图像数据馈入到分割系统,例如从 PACS或从成像设备。
[0016] _第一供应(p:rovision)单元,实现为用于提供血管的血管树表示。这样的供应 单元可以实现为从图像数据中导出血管树表示的计算单元,但是也可以仅仅包括输入接 口-其也可以与第一输入接口组合,例如作为一个公用的接口。
[0017] -第二供应单元(也是输入接口),其实现为用于提供血管的多个横截面的多个初 步边界表示。该第二供应单元可以与第一供应单元组合或单独存在。同样,其可以实现为 从图像数据导出初步边界表示的计算单元或其可以包括输入接口,该输入接口又可以与任 意上述其他输入接口以相应方式自由组合。
[0018] -第三供应单元,其实现为用于提供在多个横截面中在图像数据中的多个强度一 概图。该第三供应单元优选实现为基于图像数据提供强度一概图的计算单元。
[0019] -确定单元,其在操作中基于强度一概图确定横截面中的钙化。该确定单元又优选 实现为基于强度一概图确定钙化的计算单元。
[0020] -校正单元,其在操作中将每个初步边界表示校正为校正的边界表示,其排除了来 自于血管的内部的钙化。
[0021] 此外,本发明还涉及一种具有采集单元和按照本发明的分割系统的成像设备。
[0022] 按照本发明的分割系统,特别是其第一和/或第二和/或第三供应单元、确定单 元、和校正单元(以及以下提到的分割系统的其他组件)可以部分地或全部地通过硬件组 件实现,例如使用半导体芯片,诸如ASIC(专用集成电路)、FPGA(现场可编程门控阵列), 或PLA(可编程逻辑阵列)。然而它们也可以由软件组件或硬件和软件组件的组合来组成。 因此,本发明也涉及一种计算机程序产品。计算机程序产品可以直接加载到可编程分割系 统的处理器中,包括当计算机程序产品在分割系统上被执行时用于执行按照本发明的方法 的所有步骤的程序代码资源。
[0023] 本发明的特别优选的实施方式和特征通过独立权利要求如在以下说明书中解释 地那样给出。不同的权利要求类别的特征可以被组合为适合于给出在此没有描述的其他实 施方式。
[0024]按照一种优选实施方式,所述多个强度一概图在多个横截面中、沿着从在每个横 截面中位于血管内部的一个种子点出发向着和可能超出初步边界表示的多个一概图射线 被确定。
[0025]也优选的是,钙化在其强度高于预定的阈值水平的区域中被确定。由此,优选地, 图像数据是基于X射线采集(例如像在CT情况下那样)的并且阈值水平高于576HU,也就 是钙化的典型UV水平。
[0026] 更优选的是,将来自于钙化确定的结果与初步边界表示的延伸进行比较,以验证 该结果。这提供分割结果的更高精度并且构建了一种结果的交叉检验。
[0027] 优选地,如上所述,血管树表示包括走向线,特别是血管的中线。由此更优选地是, 中线至少一次,优选在校正初步边界表示之后至少一次被再中心化。这有助于提高在迭代 处理中中线的精度。
[0028] 此外,优选的是,图像数据被变形(warped),从而血管树表示沿着直线被对齐并且 所述多个初步的和/或校正的边界表示互相平行地对齐。这使得处理的其他步骤更容易处 理并且降低计算开销。
[0029] 优选地,初步边界表示的数量通过相应的横截面中的候选点的导出似然性值来产 生。这隐含了,初步边界表示并不固定地代表血管的边界而是包括对于按照概率来说血管 边界位于何处的似然性指示。因此,似然性值优选通过使用诸如概率推进树或随机森林算 法等训练过的分类器算法来得到。
[0030] 一般地,按照本发明的方法可以是分割步骤的任何较大数学框架的部分。然而优 选的是,其被包括在特别优选的较大分割方法中,该方法包括步骤:
[0031] a)提供钙化的血管的图像表示,
[0032] b)提供初始表面模型,其包括具有通过边、特别是无向边连接的多个顶点的网格,
[0033] c)对于多个顶点的每个顶点定义在(相对应的)顶点的位置处与表面模型正交的 一条射线。
[0034] d)将多于两个(例如五个)标签分配给每个顶点,每个标签表示该顶点在射线上 的候选位置。
[0035] e)基于在校正的边界表示中,提供对于每个候选位置的似然性的表示,该似然性 是指候选位置是否与器官的、即在图像表示中的血管的表面点相对应。
[0036] f)定义具有离散的多元随机变量的一阶马尔科夫随机场,所述随机变量包括候选 位置的标签和似然性的表示。
[0037] g)通过使用在该马尔科夫随机场中的最大后验估计来找到,S卩,搜索和/或识别 血管的最优分割(诸如分割模型和/或网格)。因此,最优的分割的特征在于如下事实,即, 分割显示了分割模型表示血管腔的真实表面的最优似然性。

【专利附图】

【附图说明】
[0038] 本发明的其他目的和特征从以下结合附图的详细描述中将变得明显。但是应当理 解,附图仅为了解释的目的而设计并且不是对本发明的限制。它们也没有必要按比例画出。 [0039] 图1示出了按照本发明的一种实施方式的分割过程的示意性框图,
[0040] 图2示出了在按照图1的处理步骤对走向线的校正过程中,血管结构的剖面图及 其该走向线,
[0041] 图3示意性示出了图1的处理的变形步骤的不同步骤,
[0042] 图4示出了可以在图1的处理的上下文中被使用的管状坐标系,
[0043] 图5示出了图4的坐标系内部的层的示意性表示,
[0044] 图6示出了在图1的处理的上下文中边界图的结构的示意图,
[0045] 图7示出了在图1的处理的上下文中特征提取处理的示意表示,
[0046]图8示出了能够在图1的处理的上下文中被使用的、具有注解(ann〇tat ed)的边 界图的血管的横截面的两个图像,
[0047]图9示出了具有相对应的第一曲线的血管的横截面图像,该第一曲线在图1的处 理的上下文中用于探测钙化斑块,
[0048]图1〇示出了具有相对应的第二曲线的血管的相同的横截面图像,该第二曲线在 图1的处理的上下文中用于探测钙化斑块,
[0049]图11示出了用于在图1的处理的上下文中使用的血管的MRF表示,
[0050]图12示出了凸函数的三个结果曲线,所述函数能够在图1的处理的上下文中被替 换地使用,
[0051]图13示出了用于在图1的处理的上下文中的最大流分析的构建的图。

【具体实施方式】
[0052] 在该整个框架中钙排除步骤也可以基于与在该例子中描述的不同的技术。特别 地,最后的步骤-也就是最终分割步骤_可以按照完全不同的逻辑来实现。
[0053]在此示出的腔分割框架在多个阶段中执行,其以类似于管线的方式产生腔表面的 网格表示。图1给出了框架的概览并且显示主要控制和数据流。
[0054] 分割Z在开始点Y开始并且具有第一步骤X,其中体积数据id, S卩,图像数据ID和 (例如前面跟踪的)血管树VT作为输入,而分割的冠状动脉-按照网格表示,g卩,包括了网 格分割数据MSD的网格分割-在结束点S处形成该框架的输出。
[0055] 首先,算法的输入数据ID、VT、CVT在第一-可选的-血管树(特别是中线)校正 步骤X (其产生校正的血管树CVT)中和在从中得到变形的体积数据WID的体积变形步骤W 中被预处理。然后,潜在的腔壁边界在边界探测步骤V中沿着圆柱形坐标被探测并且存储 在边界图BM中。为了从分割中排除钙化的区域,在步骤U中对于钙的存在分析该图和如果 需要的话修改其-这产生修改的边界图MBM。
[0056] 最后,在步骤T中,通过将边界图作为优化问题嵌入到具有凸对势的多元马尔科 夫随机场中并且然后通过使用标准最大流/最小割算法来求解其而找到最终分割。由此, 术语体积(图像-图像数据)与体积数据可互换地被使用。
[0057] 步骤X:血管树校正
[0058] 血管树的校正一般地涉及其走向线、更具体地是其中线的校正,其参考图2示出:
[0059] 腔分割质量高度地取决于血管1的提取的血管树走向线、在此是中线3 (左边)的 精度。这样的中线3可以通过使用任何可用的走向线(中线)产生算法来计算,有大量这 样的算法可用。
[0060] 该例子的全面分割算法缺省地包括在最终腔分割结果中的中线点。这归因于对中 线点的径向距离处的潜在的边界位置进行采样的光线投射方法(比较以下)。在理想情况 下,所提取的血管树将总是沿着在腔的中心处的点行进。可是在实践中冠状动脉的提取的 血管树可能缺乏精确性并且错误分支,特别是在具有斑 5和严重闭塞的区域。此外,在分叉 7处可能的是,中线3遵循捷径而不是实际的腔位置(比较图2左边)。再定位组成血管树 的点(比较图2右边)可以确保,校正的中线3'总是与腔壁间隔开地延伸,即使出现严重损 伤。中线校正X可以利用由 Zheng等:Model-Given Centerline Extraction for Severely Occluded Major Coronary Arteries. In:Machine Learning in Medical Imaging. 2012. pp.l0tol8.提供的方法来执行。在该参考文献中的算法也提供对腔强度分布(或腔似然 性)的估计。这允许对于图像数据的任何图像体素从其强度映射到处于血管腔内部的似然 性。
[0061]作为血管树校正步骤X的结果,校正的中线3'(至少粗略地-即近似地)通过血 管1的腔中心延伸并且避免碰到钙化斑块3。
[0062] 步骤W:体积变形
[0063]步骤W参考图3来解释。在此,产生体积输入图像数据ID的变形的和再采样的版 本。
[0064]由于血管1的腔边界需要精确地在图像数据id的体积的、提取的中线3、3,在那 里延伸的部分被确定,特别关注那些区域。这些区域通过中线片段来确定,所述中线片段通 过在分叉点处分裂(可选地校正的)中线3、3'而产生。
[0065]为了获得均匀的层距离和为了由此避免图像失真,中线3首先被再采样为一定的 分辨率(例如〇. Inm)的再采样中线3' ',例如通过使用双三次样条插值。
[0066]然后对于再采样中线3''的每个点,体积数据的正交横截面9(层9)通过利用在 那个点上居中的平面来切割它们而被提取并且与再采样中线3'的中线方向垂直地延伸。 这意味着,对于再采样中线的每个中线点,与再采样中线3' '正交的图像层9利用在体素之 间的位置处的双线性插值被插值。
[0067] 这些层9通过一个在另一个顶上平行堆叠而被存储在体积中,其产生变形的体积 数据WID或变形的图像数据WID。每个层的尺寸优选被调整为提取的结构的最大预计的尺 寸,即,其应当至少覆盖足够大以显示穿过血管1的、具有血管1的最大直径的横截面η的 面积。由于冠状动脉的直径不超过大约10mm的尺寸,所以感兴趣平面在该情况下可以安全 地被限制到15mm乘15mm的尺寸。如果分割其他血管,则可以相应地应用更大的尺寸。 [0068]作为变形步骤W的结果,(再采样)中线3''是在变形的图像空间中的直线并且 穿过变形的体积数据WID的每个层的中心延伸。该变换(变形)步骤W的一个优点是,腔 分割现在可以在特别地适合于诸如血管等的管状结构的圆柱形坐标系中被执行。
[0069] 步骤V :边界探测
[0070] 边界探测步骤的目的是确定在变形的体积中在每个层处将血管腔内部与其壁分 离的(初步)边界。为了实现这一点,首先需要找到在潜在的边界位置处的候选并且评估 其合适性。换言之,边界点候选被产生并且被分配一个似然性值。
[0071] 有利的是,在极坐标、分别是圆柱形坐标系中而不是使用笛卡尔坐标系搜索腔壁, 因为腔轮廓的探测被降低到沿着一维射线搜索的数量。这样的圆柱形坐标系在图4中画 出。在此,层9的高度在变形的体积中通过坐标z表示,而角度k和径向距离r确定了在极 坐标中横截面(即层9)中的点。
[0072] 以下过程也公知为光线投射方法:将层的中心-是腔中心-考虑为一个极,围绕腔 中心的密集的径向采样通过使用小的参数空间而变得可行。图6示出了对于变形的体积的 层的等距选择z e [1,Z]而产生的边界候选点,例如对于每个层或对于每第五个层(取决 于期望的精度)。在每个这样的层中产生沿着K个射线的R个点(在此 5个点)。每个点 由此通过层、角度k和沿着其射线的位置1至5被定义。
[0073] 每个这样产生的候选边界点然后对于其位于血管的腔边界上的似然性而被评估。 对于该目的,可以应用很好建立的各种模型和方法,诸如加权的强度差方法、梯度大小方法 或概率确定方法,其基于前面之前训练的分类器算法,诸如随机森林或概率推进树算法。预 计它们在接近腔边界的位置处产生更高的似然性分值。可以预计,边界值似然性作为在0 和1之间的标量来表达。为了方便,候选边界点的获得的似然性值可以被存储在维度为K X Z X R的体积l(k,z,r)中,即边界图B,如图6所示。
[0074] 边界图中的每个元素应当是非负的值,其在接近真实的腔壁的位置处产生仅高的 值。在此可以利用如下事实,即,在腔内部的组织具有比在壁外部的更高的强度(例如HU) 值。这意味着,例如,在沿着射线的连续位置处被计算的大的正的前向差可以被用来表示边 界。现在存在大量可能性性来将其合并到算法中。最显著的方法中的两个方法是,或者精 确地进行求导以获得腔边界分值,或者隐含地使用它们,更精确地,使得不同的导数特征通 过在机器学习方法中的分类器来评估以产生所寻求的概率。
[0075] 相对于机器学习背景的边界探测通常表达为二进制分类问题。由此所需的是一些 基本事实注解,例如来自于在训练的数据库中提供的先前的手动分割:训练的分类器被用 于在给定特征样本的情况下预测腔壁在每个位置处出现的概率。为了训练分类器,必须使 得一组正确分类的观察对于分类器可用,使得其能够从观察中学习区别特性(特征)。这也 称为监督的学习。这意味着,需要提供两组特征数据,一组在真实的腔壁处被评估(正的) 并且另一组在与边界远离处被计算(负的)。在训练步骤之后,分类器可以被用于对于任何 未知的特征样本预测边界概率并且由此能够被用于在边界似然性评估的在此描述的上下 文中的评估。
[0076] 对于在位置(k,Z,r)处的每个候选边界点,分类器预测,其是否(即以何种似然性 或概率)是血管1的腔边界的部分。其预测是基于从考虑的边界候选点的局部邻居提取的 图像数据ID的低水平图像特征F(k,z,r)的,其更详细地参考图7被描述:
[0077] 对于每个候选边界点CBP,图像特征采样样式SP基于点的CBP局部方向被定义, 所述CBP局部方向通过将在相对应的层9中的血管的中点CP和潜在的(候选的)边界点 CBP相连的线L来确定。在每个采样位置,然后计算低水平图像特征,诸如强度和梯度。二 进制分类器然后使用这些特征、基于手动分割的训练数据的代表性的组而被训练,以确定 候选边界点CBP位于血管的边界上的似然性/概率。可以使用任何二进制分类器,诸如上 面提到的概率推进树或随机森林分类器,其在测试中都提供相似的高精度的结果。
[0078] 在训练中,对于每个方向,在射线和基本事实注解11之间的交叉点15被考虑为正 的并且在射线上的余下点13被考虑为负的,如图8(左边)所示。图8(右边)示出了基于 分类器算法、使用来自于左边以概率图输出的形式的基本事实的边界探测处理的结果。
[0079] 步骤U:钙排除
[0080] 对于可靠的腔分割,正确处理钙化斑块是强制的,特别是当边界探测在最宽的意 义上基于图像梯度时。由于如下事实,即,在CT图像中的钙的特征在于高的强度值,因此, 通常类似于在腔内部捕捉的强度,其通常错误地被分类为腔组织并且边界在斑块和血管背 景而不是腔和斑块之间被探测。然而,在冠状动脉中的钙化区域提示威胁生命的狭窄并且 从定义来说并不是血管流过的腔的部分并且因此,必须从分割结果中被排除。为此目的,边 界要在(钙化)斑块和血管腔之间而不是在(钙化)斑块和血管背景之间被探测。
[0081] 为了理解,为什么钙化斑块被错误地包括在分割中,发明人针对异常对强度的径 向一概图、腔概率和边界概率值进行了分析。它们的一概图展示了当相对应的射线通过钙 化区域而不是健康区域时的一定的样式。
[0082] 图9和10示出血管的相同横截面视图的顶部。在图9中射线17穿过示出的血管 的健康部分,而在图10中射线17'在不同的方向在相同的血管内部穿过钙化斑块,所述钙 化斑块可以通过在斑块区域中的图像的亮度来区分。在两个图的底部的图上,对于图像强 度JJ的一概图,腔似然性LL (比较步骤X)和边界似然性(比较步骤V)已经对于一层和在 给定的角度下的特定的射线、诸如在两个图中的两个不同的射线17、17'被提取。水平轴示 出了以mm为单位的距离,而垂直轴指按照在1和0之间的数字表示的似然性L并且指没有 给出的数字但是具有与576HU的CT图像强度相对应的一组零阈值水平的强度J。
[0083]至于图9,图像强度JJ通常低于该组阈值水平。而腔似然性从左到右显示了下降 到零的相当稳定的曲线,边界似然性主要显示了在大约位置1. 3mm处的峰。
[0084] 至于图10,图像强度在大约1. 5mm的距离处超过该组阈值水平,在大约2. 2mm处达 到峰值并且在大约2. 7mm处下降到低于该组阈值水平。腔似然性LL显示两个峰并且边界 似然性BL甚至显示三个峰,最左边的峰与排除了钙化斑块的真实腔边界相对应。边界似然 性BL的最右边的峰指的是错误地包括了钙化斑块的边界。校正的边界似然性丨。与排除了 钙化斑块的真实边界似然性相对应。这一点在如下的启发式方法中实现:
[0085] 首先,钙化斑块通过确定高于一定的预定阈值的强度一概图的范围来识别,在此 是576HU的该组阈值。为了提高鲁棒性和防止错误响应,阈值可以基于腔强度分布(比较 步骤)〇、通过向其加上(或从其减去)图像数据依赖方差(优选两次这样的方差),根据当 前图像数据来提高。该组阈值由此可以是选择的常数,或者是使用固定的阈值 tf和平 均腔强度μ i加上两次其方差σ 1的、适应性的阈值,从而
[0086] tCAL = max (tf, μ χ+2 σ χ) (1)
[0087]然后,沿着射线17的范围被认为是相关的钙化区域,该射线与中线最接近并且优 选具有例如〇· 3mm的一定的最小长度。除了在中线点处的开始半径r。的索引之外,还提取 了半径r m,对于所述半径rm,强度在钙化区域内部是最大的(即在图n中大约2. 2_处图 像强度JJ的峰)。然后,沿着射线17'的校正的边界似然性被获得为
[0088]

【权利要求】
I. 一种用于在图像数据中分割钙化的血管的方法,包括步骤: -提供所述血管的血管树表示, -提供所述血管的多个横截面的多个初步边界表示, -提供在所述多个横截面中在所述图像数据中的多个强度一概图, -基于所述强度一概图确定所述横截面中的钙化, -将每个初步边界表示校正为校正的边界表示,其排除了来自于所述血管的内部的齊 化。
2·根据权利要求1所述的方法,其中,所述多个强度一概图在所述多个横截面中、沿着 从在每个横截面中位于所述血管内部的一个种子点出发向着初步边界表示的多个一概图 射线被确定。
3. 根据权利要求1所述的方法,其中,所述钙化在如下区域中被确定,所述区域的强度 高于预定的阈值水平。
4. 根据权利要求3所述的方法,其中,所述图像数据是基于X射线采集的并且所述阈值 水平高于576HU。
5·根据权利要求1所述的方法,其中,将来自于对所述钙化进行确定的结果与所述初 步边界表示的延伸进行比较,以验证该结果。
6.根据权利要求1所述的方法,其中,所述血管树表示包括所述血管的中线。
7·根据权利要求6所述的方法,其中,所述中线至少一次,优选在校正所述初步边界表 示之后至少一次被再中心化。
8·根据权利要求1所述的方法,其中,所述图像数据被变形,从而血管树表示沿着直线 被对齐并且所述多个初步边界表示和/或校正的边界表示互相平行地对齐。
9. 根据权利要求1所述的方法,其中,所述初步边界表示的数量是通过导出相应的横 截面中的候选点的似然性值来产生的。
10. 根据权利要求9所述的方法,其中,所述似然性值是通过使用训练过的分类器算法 来导出的。 II. 根据权利要求1所述的方法,包括步骤: a) 提供钙化的血管的图像表示, b) 提供初始表面模型,其包括具有通过边连接的多个顶点的网格, c) 对于每个顶点定义在顶点的位置处与表面模型正交的一条射线, d) 将多于两个标签分配给每个顶点,每个标签表示该顶点在该射线上的候选位置, e) 基于校正的边界表示,提供对于每个候选位置的似然性的表示,该似然性是指候选 位置是否与在所述图像表示中的血管的表面点相对应, f) 定义具有离散的多元随机变量的一阶马尔科夫随机场,所述随机变量包括候选位置 的标签和似然性的表示, g) 通过使用在该马尔科夫随机场中的最大后验估计来找到钙化的血管的最优分割。
12. -种用于分割图像数据中钙化的血管的分割系统,包括以下单元: -用于图像数据的输入接口, -第一供应单元,实现为用于提供所述血管的血管树表示, -第二供应单元,实现为用于提供所述血管的多个横截面的多个初步边界表示, -第三供应单兀,实现为用于提供在所述多个横截面中在所述图像数据中的多个强度 一概图, -确定单元,其在操作中基于强度一概图确定横截面中的钙化, -校正单元,其在操作中将每个初步边界表示校正为校正的边界表示,后者排除了来自 于所述血管的内部的钙化。
13. -种具有采集单元和按照权利要求12所述的分割系统的断层成像设备。
14. 一种计算机程序产品,能够直接加载到可编程的分割系统的处理器中,包括当计算 机程序产品在分割系统上被执行时用于执行按照权利要求1的方法的所有步骤的程序代 码资源。
【文档编号】G06T7/00GK104217418SQ201410224743
【公开日】2014年12月17日 申请日期:2014年5月26日 优先权日:2013年5月31日
【发明者】M.凯尔姆, F.卢高尔, 张竞丹, 郑冶枫 申请人:西门子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1