一致流动热沉的制作方法

文档序号:11530447阅读:263来源:国知局
一致流动热沉的制造方法与工艺

概述

本文描述了用于计算设备的通风系统的一致流热沉。在一种或多种实现中,热沉被配置成对空气流动通道采用可变间隔以计及由计算设备外壳内的各组件的布置所造成的空气流动方面的非一致性。非一致性可以通过对计算设备的空气流动简档的分析来查明。计算设备的空气流动率可以通过将通风系统的热沉的空气流动通道间隔配置成围绕热沉周界改变以计及被查明的空气流动方面的非一致性来进行平衡。空气流动通道间隔可以通过改变与热沉相关联的热传递表面的浓度、间隔、节距、定位和/或其他特性来控制。一般来说,空气流动通道间隔在高系统阻抗区域中被增大而在低系统阻抗区域中被减小以达成增加的流动一致性。

提供本概述以便以简化的形式介绍以下在详细描述中进一步描述的一些概念。本概述并非旨在标识出要求保护的主题的关键特征或必要特征,亦非旨在用作辅助确定要求保护的主题的范围。

附图简述

结合附图来描述具体实施方式。在附图中,附图标记最左边的数字标识该附图标记首次出现的附图。在说明书和附图的不同实例中使用相同的附图标记可指示相似或相同的项目。附图中所表示的各实体可指示一个或多个实体并且因而在讨论中可互换地作出对各实体的单数或复数形式的引用。

图1是根据一个或多个实现的用于采用热沉的操作环境的图示。

图2描绘了根据一个或多个实现的包括热沉的图1的通风系统的示例。

图3描绘了根据一个或多个实现的被布置成与热沉相组合的鼓风机的示例。

图4是描绘可以与示例计算设备相关联的非一致流动特性的示例表示的图示。

图5是描绘改变热沉的热传递表面的特性以补偿非一致流动特性的示例的图示。

图6是描绘其中通过使热沉偏移来产生非一致空气流动通道的示例的图示。

图7是描绘根据一个或多个实现的用于配置统一流动热沉的示例规程的流程图。

图8例示出了包括可被实现为如参考图1-7描述的任何类型的计算设备来实现本文描述的技术的各方面的示例设备的各个组件的示例系统。

详细描述

概览

计算设备可包括在操作期间产热的各种电子组件(例如,发热设备),诸如中央处理单元、图形处理单元等等。由于这样的设备可能因过热而损坏,所以计算设备可包括通风系统。在一种布置中,鼓风机(例如,风扇)可以被用于提供空气流动以冷却热沉或位于鼓风机出口附近的其他热传递设备。热沉可以被配置成包括多个热传递表面(诸如鳍和/或通道),该热传递表面从发热设备汲取热并且经由鼓风机被冷却。因而,热可以通过传导和/或相变循环(例如,热管道)以及来自鼓风机出口的空气鼓动从发热设备传递到热传递表面。传统上,尽管热传递表面被一致地布置(诸如均匀分布和/或间隔)在鼓风机口处。由于计算设备的鼓风机和热沉外部的空气流动特性在不同区域可能不同,所以热传递表面的一致布置可能提供非一致的流动和低效的冷却。附加地,与鼓风机相关联的噪声可以至少部分地归因于通过一致地布置的热传递表面所产生的声压。

本文描述了用于计算设备的通风系统的一致流动热沉。在一种或多种实现中,热沉被配置成对空气流动通道采用可变间隔以计及由计算设备外壳内的各组件的布置所造成的空气流动方面的非一致性。非一致性可以通过对计算设备的空气流动简档的分析来查明。计算设备的空气流动率可以通过将通风系统的热沉的空气流动通道间隔配置成围绕热沉周界改变以计及被查明的空气流动方面的非一致性来进行平衡。空气流动通道间隔可以通过改变与热沉相关联的热传递表面的浓度、间隔、节距、定位和/或其他特性来控制。一般来说,空气流动通道间隔在高系统阻抗区域中被增大而在低系统阻抗区域中被减小以增加流动一致性。按照本文所述的方式来平衡空气流动最优地分布和利用热传递表面,这可增加热沉的有效性。附加地,改变空气流动通道间隔相对于使用一致间隔而言可以得到通风系统(例如,风扇或鼓风机)所生成的噪声的降低。

在以下讨论中,首先描述可采用本文描述的热传递技术的示例环境。随后描述可在该示例环境以及其他环境中执行的示例细节和规程。因此,各细节和规程不限于该示例环境,并且该示例环境不限于各示例细节和规程的实现。

示例操作环境

图1是可在操作上采用本文描述的技术的一示例实现中的环境100的图示。所示出的环境100包括具有处理系统104和被示为存储器106的计算机可读存储介质的计算设备102,虽然也可构想其它配置,如以下进一步描述的。

计算设备102可以各种各样的方式被配置。例如,计算设备可被配置成能够通过网络进行通信的计算机,诸如台式计算机、移动站、娱乐设备、通信地耦合至显示设备的机顶盒、无线电话、游戏控制台等等。因此,计算设备102的范围可以是从具有充足存储器和处理器资源的全资源设备(例如,个人计算机、游戏控制台)到具有有限存储器和/或处理资源的低资源设备(例如,常规机顶盒、手持式游戏控制台)。附加地,尽管示出了单个计算设备102,但是计算设备102可以表示多个不同设备,诸如被公司用于(诸如通过web服务)执行操作的多个服务器、遥控器和机顶盒组合、被配置成捕捉姿势的图像捕捉设备和游戏控制台等。对于可被计算设备假定的不同配置的进一步讨论可在关于图10中找到。

计算设备102被进一步例示为包括操作系统108。操作系统108被配置来将计算设备102的底层功能抽象给可在计算设备102上执行的应用110。例如,操作系统108可抽象计算设备102的处理系统104、存储器106、网络、和/或显示设备112功能,使得应用110可被写,而无需知晓这个底层功能“如何”被实现。例如,应用110可向操作系统108提供要被呈现并由显示设备112显示的数据,而无需理解该呈现如何被执行。操作系统108也可表示各种其他功能,诸如管理计算设备102的用户可导航的文件系统和用户界面。

计算设备102可支持各种各样不同的交互。例如,计算设备102可包括可被用户操纵来与设备进行交互的一个或多个硬件设备,诸如键盘、光标控制设备(例如,鼠标、跟踪垫、或触摸设备)等。计算设备102还可支持可用各种方式被检测到的姿势。计算设备102例如可支持通过使用计算设备102的触摸功能被检测到的触摸姿势。传感器114例如可被配置成结合显示设备112提供触摸屏功能,单独作为跟踪垫的一部分等。这个的一个示例在图1中示出,其中用户的第一和第二手116、118被示出。用户的第一手116被显示为正握持计算设备102的外壳120。用户的第二手118被示为提供通过使用显示设备112的触摸屏功能被检测到的一个或多个输入以执行操作,诸如作出滑刷手势来扫视如示出的操作系统108的开始菜单中的应用表示。

由此,输入的识别可被利用来与由计算设备102输出的用户界面进行交互,诸如与游戏、应用进行交互,浏览因特网、改变计算设备102的一个或多个设置,等等。传感器114也可被配置成支持可识别可能不涉及触摸的交互的自然用户界面(nui)。例如,传感器114可被配置成检测无需用户触摸特定设备情况下的输入,如通过使用话筒来识别音频输入。例如,传感器114可包括话筒以支持语音识别来识别特定话语(例如,口述命令),以及识别提供该话语的特定用户。

在另一示例中,传感器114可被配置成通过使用加速计、陀螺仪、惯性测量单元(imu)、磁力计等来检测计算设备102在一个或多个维度(诸如如示出的x、y和z维度)中的移动。该移动可被整体或部分地识别为姿势的定义的一部分。例如,在z轴中的计算设备102的移动可被用于缩放显示于显示设备112上的用户界面,x轴上的旋转可被用于在视频游戏中操纵汽车等。因此,在此示例中计算设备102可在各种各样的不同的方向中移动以便支持与设备的交互。

在又一示例中,传感器114可被配置成通过如一个或多个相机的实现来识别姿势、被呈现的对象、图像等等。例如,相机可被配置成包括多个镜头,使得各不同的观察点可被捕捉并由此确定深度。例如,不同的观察点可被用于确定距传感器114的相对距离并由此可被用于确定该相对距离的改变。各不同的观察点可被计算设备102用作深度感知。这些图像还可被计算设备102用于支持各种各样的其他功能,诸如用于标识特定用户(例如通过面部识别)、对象等的技术。还应注意,传感器114也可通过如相机的实现在x、y、或z轴中的一个或多个中来支持如上所述的移动的检测。

计算设备102被进一步示为包括功率控制模块122。功率控制模块122表示用于使设备进入不同功率消耗状态的功能。例如,处理系统104可被配置成支持低功率状态,其中处理资源被降低且处理系统104的功率消耗也被降低。因此,当在此低功率状态中,处理系统104可被配置成节省资源(例如,来自电池的)。

在操作期间,处理系统104和其他组件可充当发热设备,如果未经缓和则可产生超过“安全”限制的热水平。如果这样的热限制被达到,计算设备可能不得不被关闭和/或处理系统104的操作可能被抑制,其对性能产生了不利的影响。因此,计算设备可包括一些类型的热管理系统以便管理发热设备。

根据在本文档中描述的原理,计算设备102包括用于进行热管理的通风系统124,通风系统124可包括被设计成促进一致流动的热沉126。如之后的详细章节中所讨论的,通风系统124和热沉126可被配置成计及计算设备外壳内的各组件的布置所导致的空气流动方面的非一致性(例如,系统空气流动阻抗)。为此,热沉的空气流动通道间隔可以被改变以计及该非一致性并且平衡流动。一般来说,空气流动通道间隔可以在被标识为具有高系统阻抗的区域中被增大并且在被标识为具有低系统阻抗的区域中被减小。按照本文所述的方式来平衡空气流动最优地分布和利用热传递表面,这可增加热沉的有效性。附加地,改变空气流动通道间隔相对于使用一致间隔而言可以得到通风系统124(例如,风扇或鼓风机)所生成的噪声的降低。

已经考虑了以上示例操作环境,现在考虑根据一个或多个实现的用于一致流动热沉的示例细节和规程的讨论。

一致流动热沉实现细节

本章节描述关于根据一个或多个实现的一致流动热沉的细节和示例。此外,以上和一下示例有关的功能、特征和概念可以彼此互换,并且不限于在特定附图或规程的上下文中的实现。此外,与此处的不同代表性组件和规程以及相应附图相关联的框可以不同方式被一起应用和/或组合。此外,结合本文的不同示例环境、设备、组件和规程描述的单个功能、特征和概念可以在任何适当的组合中使用且不限于本说明书中所枚举的示例所代表的特定组合。

图2在200处概括地描绘了根据一个或多个实现的采用热沉126的图1的通风系统124的示例代表。在图2的示例中,通风系统124被例示为被布置在计算设备102的外壳内。计算设备102可包括被描绘为在一种布置中贯穿外壳布置的多个发热设备202。发热设备202可包括如关于图1描述的处理系统104以及计算设备的其他组件,诸如电源单元、电池、微处理器、以及图形处理器,仅举几个例子。图2使用箭头附加地表示用于冷却对应的计算设备的组件的通过通风系统124的流动以示出从通风系统到发热设备202的一般流动路径。尽管本文关于空气冷却来描述各方面,但类似技术可以结合采用不同类型的气体甚至液体的其他类型的流体冷却系统来使用。

如图2中表示的通风系统124包括热沉126、鼓风机204、以及用于将热量传送离开发热设备202到达热沉126以用于经由鼓风机204进行冷却的一个或多个散热设备206。根据本文档所述的技术,热沉126可以与鼓风机204相结合地被布置以创建可变的空气流动通道间隔,该可变的空气流动通道间隔计及与用于计算设备的组件的特定布置相关联的非一致流通特性。关于热沉126与鼓风机204的合适布置以增加空气流动的一致性的示例和细节可以在以下的图3到6中找到。

提供了鼓风机204,鼓风机204被设计成通过进气口从外壳外部拉取空气进入外壳内部。鼓风机204表示移动和分散用于系统的冷却流体(在这一情形中为空气)的功能。鼓风机204可以用各种方式来配置,诸如是用于移动空气的轴向风扇或离心式鼓风机。泵、叶轮和其他类型的流体移动器也可在替换设计中使用和/或结合其他类型的冷却流体来使用。鼓风机204被设计成经由去往各个发热设备202的一个或多个流管道将空气贯穿外壳内部分散。各种类型的流管道被构想,诸如形成在外壳、管道系统、管、多支管、挡板等中的通道。被鼓风机204汲取到设备内部并且被递送至发热设备202的冷却空气用于通过热传导(其加热空气)来冷却设备。被加热的空气从发热设备202流向排气出口,该排气出口处被加热的空气从系统中被排出。

散热设备206可被配置成将热传离发热设备202,通过使用导热性、相变、散热片、蒸发、热沉(heatsinks)、以及其他技术来将热传导离开设备。散热设备206可被用于将热量从各个设备汲取离开以抵达热沉126以用于进行冷却。例如,散热设备206可能是具有被配置成导热性材料(例如,诸如铜之类的金属)的包封导管的一个或多个热管(如图2中所例示)的形式,并因此可使用导热性将热传导离开发热设备202。热可被抽出到设备的通气口或其他耗散机制。附加地或替换于使用热管,其他类型的技术和组件可被用于将热抽离发热设备,诸如相变设备、蒸汽室、散热片、热沉等等。一般而言,任何高导热设备和/或材料可被用作热传递机制。

图3是与热沉126相组合地布置的鼓风机204的透视图。在这一示例中,鼓风机204被配置为离心式风扇单元,但还构想了其他配置。鼓风机204被描绘为包括毂302、多个刀片304和马达306。毂302可以是可旋转毂,且马达306可被配置来围绕轴308(如图3虚线所示)旋转毂302。马达306可以是直流或交流电马达。替换地,可以采用非电马达。尽管在图3中被描绘为位于毂302内部,但马达306可以位于毂302外部,在此情形中线缆或带可以被用于将马达306耦合至毂302并且旋转毂302。在制造期间,多个刀片304可被形成为毂302的一部分,或者可以是分开地制造的组件。图3中示出了多个刀片304,此多个刀片304如具有使得它们垂直于旋转轴的朝向;但是,刀片304可以某其它方式定向。

来自鼓风机204的空气流动在与轴308相切的迹线中向外行进。空气流动向热沉126行进,热沉126包括多个热传递表面310。热传递表面310在图3中被示为薄散热片结构。附加地或替换地,可使用其它的、更多的和/或更少的热传递表面,诸如具有增加热传递表面积的各种特征的散热片,诸如散热片上散热片、凹窝、凸起、脊、不规则形状散热片、丛林等等。热沉126以及热传递表面310与鼓风机204的布置形成了空气流动通道312,通过该空气流动通道312可以进行对热沉126和发热设备202的冷却。

热传递表面310的特性可以被选择并且改变以控制空气流动通道围绕鼓风机204周界的间隔。例如,包括但不限于表面的浓度、俯仰角、大小、形状、对齐、间隔、以及定位的热传递表面310的特性可以围绕热沉辐射状地被改变。热传递表面310的各种组合也可被使用,以使得热沉126的不同个体表面或区域可以被布置成具有不同的俯仰角、大小、形状、间隔以及其他可变特性。通过使用热传递表面310的非一致布置,通过热沉126的流动特性可以被调整以将空气流动相对于指示流动和阻抗方面的非一致性的观察到的基线流动简档进行平衡。换言之,热传递表面310的非一致布置可以被用于补偿与计算设备的不同组件和区域相关联的流动/阻抗方面的差异并且藉此达成增加的流动一致性。

可以利用除了图3中例示的鼓风机设计之外的鼓风机设计。例如,多个刀片304可相对于旋转的方向向前倾斜(使得刀片的外部边缘(那些更远离毂302的中心的边缘)在刀片的内部边缘之前前进)或相对于旋转方向向后倾斜(使得刀片的内部边缘在刀片的外部边缘之前前进)。刀片也可以与热传递表面310成角度,使得刀片304的顶部边缘在刀片304的底部边缘之前前进,或反之亦然。刀片可以被(向前或向后或从上到下)弯曲,等等。也可使用各种刀片组合,使得某些成角度、某些倾斜以及某些弯曲或不规则形状的刀片可在同一风扇上被使用。毂302可仅部分包围多个刀片304,或可完全不包围多个刀片304。

根据以上示例和原理,计算设备124的通风系统124可包括使用热传递表面310的可变布置的热沉126。热传递表面310的特定布置可取决于计算设备的流动特性。指示具有多个组件布置的计算设备的流动特性的流动简档可以基于计算机辅助的流动建模或者通过实验来获得。流动简档被配置成指示针对计算设备的个体组件和/或区域的流动方面的非一致性。流动简档可以提供可被用于标识和区分低阻抗/高流动区域以及高阻抗/低流动区域的数据。特定系统的流动特性是各种因素的函数,这些因素包括但不限于,组件的布局、组件的类型、用于组件和设备的材料、外壳的大小/厚度、鼓风机类型/大小、通风系统属性等等。这些和其他因素可以被考虑以生成表示特定系统的流动简档。

作为示例,图4在400处概括地描绘可以与示例计算设备相关联的非一致流动特性的示例表示。在所描绘的示例中,计算设备102的不同部分被示为与不同阻抗和流动水平相关联。例如,区域402与低阻抗/高流动相关联,而区域404与高阻抗/低流动相关联。计算设备102的流动简档可以反映具有不同流动特性的这些区域。为了简单起见,阻抗和流动的高水平和低水平被表示。然而,各种不同的水平类别可以在流动范围内被定义和/或流动简档可以反映为个体区域测量/计算的实际值而非使用水平类别。如先前所提及的,通风系统124以及尤其是热沉126的特性可以被设计和/或修改以补偿非一致流动特性,诸如图4中所表示的那些。

改变热沉126的热传递表面310的特性以补偿非一致流动特性的示例在图5中在500处被概括地表示。在所描绘的示例中,示例热沉126被例示,该示例热沉126被配置成计及图4的示例中所表示的非一致流动特性。具体地,热沉126被描绘为具有热传递表面310,该热传递表面310围绕鼓风机周界进行改变以创建补偿系统的基线流动和阻抗方面的差异的空气流动通道。例如,热传递表面310的各个特性可以被调整以在低阻抗区域中创建窄通道502,这可限制这些区域中的流动。同样地,热传递表面310可以被调整为在高阻抗区域中创建宽通道502,这可促进这些区域中较多的流动。窄通道502用于相对于宽通道502增加流动阻抗,而宽通道502可以减小流动阻抗。因而,通过选择性地改变热传递表面310的特性,流动方面的非一致性可以被平衡。

如所提及的,热沉的热传递表面310的特性可以用各种方式来改变以增大通风系统的流动的一致性。在一种办法中,被配置为鳍的热传递表面310的俯仰角可以围绕热沉辐射状地被改变。至少一些鳍的俯仰角可以在低阻抗/高流动区域中被增大以降低流动,并且在高阻抗/低流动区域中被减小以增大流动,藉此对流动进行平衡。附加地或替换地,鳍或其他热传递表面310的浓度或密度可以被改变。一般来说,较高的表面浓度将创建与较低浓度相比更多阻抗以及更低流动。间隔是热传递表面310中可以被改变以产生对流动特性进行补偿的对应空气流动通道的另一示例特性。根据所述技术的可以被改变的热传递表面310的其他特性包括但不限于,大小、形状、对齐以及定位。示例特性中的一者或多者可以被单独采用以及彼此相组合地被采用以创建热沉126的热传递表面310的非一致布置。

作为改变热传递表面的特性的附加或替换可以被采用的另一技术在图6中被表示。具体地,图6在600处概括地描绘其中通过使热沉126偏移来产生非一致空气流动通道的示例。具体地,图6中的热沉126被描绘为被移动以失去与鼓风机204的中心对准。此处,在热沉126与鼓风机204之间的一侧上创建了窄间隔602,而在热沉126与鼓风机204之间的另一侧上创建了宽间隔604。窄间隔602可用于相对于宽间隔604增加流动阻抗,而宽间隔604可以减小流动阻抗。相应地,可以通过选择性地使热沉126偏移以创建与低阻抗区域对齐的窄间隔602以及低阻抗区域中的宽间隔604来对流动进行平衡,如图6中所表示的。热沉126的偏移可以被用于具有热传递表面310的一致布置的热沉126。替换地,热沉126的偏移可以与热传递表面310的非一致布置相组合地使用以提供对系统空气流动平衡的进一步控制。

示例规程

这一章节提供了对图7的示例规程700的讨论,图7例示了根据一个或多个实现的配置一致流动热沉的细节。本文描述的示例规程可结合任何合适的硬件、软件、固件或其组合来实现。

计算设备的通风系统关于计算设备的发热组件的布置的空气流动简档被确定(框702)。接着,由空气流动简档所指示的空气流动方面的非一致性被查明(框704)。例如,计算设备102的通风系统124的空气流动简档可以根据实验或者基于系统的计算机建模被生成。空气流动简档可以示出或者以其他方式指示与不同流动和阻抗特性相关联的区域,诸如先前关于图4的示例所讨论的。因而,可以使用该简档来标识各种非一致性。

计算设备的空气流动率可以通过将通风系统的热沉的空气流动通道间隔配置成围绕热沉周界改变以计及被查明的空气流动的非一致性来进行平衡(框706)。平衡被设计成对非一致性进行补偿并且创建更一致的流动简档。为此,空气流动通道间隔在由空气流动简档所指示的高空气流动阻抗区域中被增大(框708),并且空气流动通道间隔在由空气流动简档所指示的低空气流动阻抗区域中被减小(框710)。对空气流动通道间隔的配置可以通过如先前所讨论的改变热传递表面310的特性来实现,诸如通过辐射状地改变热传递表面310围绕热沉周界的俯仰角、间隔、浓度、大小、形状或定位中的一者或多者。对空气流动通道间隔的配置还可包括使热沉126相对于鼓风机204偏移以选择性地创建空气流动通道间隔的非一致布置。

考虑了与通风系统的一致流动热沉的实现有关的以上示例细节和规程,现在考虑对一个或多个实现中可以利用如本文所述的热沉的示例系统、设备和组件的讨论。

示例系统和设备

图8在800概括地例示了包括示例计算设备802的示例系统,该示例计算设备表示可以实现本文描述的各个技术的一个或多个计算系统和/或设备。计算设备802可以是,例如,服务提供方的服务器、与客户端相关联的设备(例如,客户端设备)、片上系统、和/或任何其他合适的计算设备或计算系统。

所例示的示例计算设备802包括处理系统804、一个或多个计算机可读介质806、以及相互通信地耦合的一个或多个i/o接口808。计算设备还可包括具有如本文所述的热沉126的通风系统124。尽管没有示出,计算设备802可进一步包括系统总线或将各种组件相互耦合的其它数据和命令传输系统。系统总线可以包括不同总线结构中的任一个或其组合,诸如存储器总线或存储器控制器、外围总线、通用串行总线和/或利用各种总线体系结构中的任一种的处理器或局部总线。也构想了各种其它示例,诸如控制和数据线。

处理系统804表示使用硬件执行一个或多个操作的功能。因此,处理系统804被例示为包括可被配置为处理器、功能块等的硬件元件810。这可包括在作为专用集成电路或使用一个或多个半导体构成的其它逻辑设备的硬件中的实现。硬件元件810不受形成它们的材料或者其中利用的处理机制的限制。例如,处理器可以由半导体和/或晶体管(例如,电子集成电路(ic))构成。在这一上下文中,处理器可执行指令可以是可电子地执行的指令。

计算机可读存储介质806被例示为包括存储器/存储812。存储器/存储812表示与一个或多个计算机可读介质相关联的存储器/存储容量。存储器/存储组件812可包括易失性介质(如随机存取存储器(ram))和/或非易失性介质(如只读存储器(rom)、闪存、光盘、磁盘等等)。存储器/存储组件812可包括固定介质(例如,ram、rom、固定硬盘驱动器等)以及可移动介质(例如闪存、可移动硬盘驱动器、光盘等等)。计算机可读介质806可以下面进一步描述的各种方式来配置。

输入/输出接口808表示允许用户向计算设备802输入命令和信息的功能,并且还允许使用各种输入/输出设备向用户和/或其它组件或设备呈现信息。输入设备的示例包括键盘、光标控制设备(例如,鼠标)、话筒、扫描仪、触摸功能(例如,电容性的或被配置来检测物理触摸的其它传感器)、照相机(例如,可采用可见或诸如红外频率的不可见波长来将移动识别为不涉及触摸的手势),等等。输出设备的示例包括显示设备(例如,监视器或投影仪)、扬声器、打印机、网卡、触觉响应设备,等等。因此,计算设备802可以下面进一步描述的各种方式来配置以支持用户交互。

本文可以在软件、硬件元件或程序模块的一般上下文中描述各种技术。一般而言,此类模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、元件、组件、数据结构等。本文使用的术语“模块”、“功能”和“组件”一般表示软件、固件、硬件或其组合。本文描述的技术的各特征是平台无关的,从而意味着该技术可在具有各种处理器的各种商用计算平台上实现。

所描述的模块和技术的实现可以被存储在某种形式的计算机可读介质上或跨某种形式的计算机可读介质传输。计算机可读介质可包括可由计算设备802访问的各种介质。作为示例而非限制,计算机可读介质可包括“计算机可读存储介质”和“计算机可读信号介质”。

“计算机可读存储介质”指相对于仅信号传输、载波、或信号本身而言,允许对信息的存储的介质和/或设备。因此,计算机可读存储介质不包括信号承载介质、瞬态信号或信号本身。计算机可读存储介质包括以适合于存储如计算机可读指令、数据结构、程序模块、逻辑元件/电路、或其它数据等的方法或技术来实现的诸如易失性和非易失性、可移动和不可移动介质和/或存储设备的硬件。该计算机可读存储介质的示例包括但不限于,ram、rom、eeprom、闪存或其它存储器技术、cd-rom、数字多功能盘(dvd)或其它光存储、硬盘、磁带盒、磁带、磁盘存储或其它磁存储设备、或者可适用于存储所需信息并可由计算机访问的其它存储设备、有形介质或制品。

“计算机可读信号介质”可以指被配置为诸如经由网络向计算设备802的硬件传输指令的信号承载介质。信号介质通常用诸如载波、数据信号、或其他传输机制等经调制数据信号来体现计算机可读指令、数据结构、程序模块或其他数据。信号介质还包括任何信息传送介质。术语“经调制数据信号”是指使得以在信号中编码信息的方式来设定或改变其一个或多个特征的信号。作为示例而非限制,通信介质包括有线介质,诸如有线网络或直接线路连接,以及无线介质,诸如声学、rf、红外线和其它无线介质。

如前面所描述的,硬件元件810和计算机可读介质806表示以硬件形式实现的模块、可编程设备逻辑和/或固定设备逻辑,其可被某些实施例采用来实现此处描述的技术的至少某些方面,诸如执行一个或多个指令。硬件可包括集成电路或片上系统、专用集成电路(asic)、现场可编程门阵列(fpga)、复杂可编程逻辑器件(cpld),和以硅或其它硬件实现的组件。在此上下文中,硬件可操作为通过指令和/或由硬件实现的逻辑来执行程序任务的处理设备,以及被用来存储用于执行的指令的硬件(例如上面描述的计算机可读存储介质)。

前面的组合也可被采用来实现在此描述的各种技术。因此,软件、硬件,或可执行模块可被实现为在某种形式的计算机可读存储介质上和/或由一个或多个硬件元件810实现的一个或多个指令和/或逻辑。计算设备802可被配置成实现对应于软件和/或硬件模块的特定指令和/或功能。因此,可作为软件由计算设备802执行的模块的实现可至少部分以硬件完成,例如,通过使用计算机可读存储介质和/或处理系统810的硬件元件804。指令和/或功能可以是一个或多个制品(例如,一个或多个计算设备802和/或处理系统804)可执行/可操作的,以实现本文描述的技术、模块、以及示例。

如在图8中进一步示出,示例系统800实现了用于当在个人计算机(pc)、电视机设备和/或移动设备上运行应用时的无缝用户体验的普遍存在的环境。服务和应用在所有三个环境中基本相似地运行,以便当使用应用、玩视频游戏、看视频等时在从一个设备转换到下一设备时得到共同的用户体验。

在示例系统800中,多个设备通过中央计算设备互连。中央计算设备对于多个设备可以是本地的,或者可以位于多个设备的远程。在一个实施例中,中央计算设备可以是通过网络、因特网或其他数据通信链路连接到多个设备的一个或多个服务器计算机的云。

在一个实施例中,该互连架构使得功能能够跨多个设备来递送以向多个设备的用户提供共同且无缝的体验。多个设备的每一个可具有不同的物理要求和能力,且中央计算设备使用一平台来使得为设备定制且又对所有设备共同的体验能被递送到设备。在一个实施例中,创建目标设备的类,且使体验适应于设备的通用类。设备类可由设备的物理特征、用途类型或其他共同特性来定义。

在各种实现中,计算设备802可采取各种各样不同的配置,诸如用于计算机814、移动设备816和电视机818用途。这些配置中的每一个包括可具有一般不同的构造和能力的设备,并且因而计算设备802可根据不同的设备类中的一个或多个来配置。例如,计算设备802可被实现为计算机814类的设备,该类包括个人计算机、台式计算机、多屏幕计算机、膝上型计算机、上网本等。计算设备802可以是可穿戴设备,诸如手表或一对眼镜,或者可以被包括在家用、商业或工业电器中。

计算设备802还可被实现为移动设备816类的设备,该类包括诸如移动电话、便携式音乐播放器、便携式游戏设备、平板计算机、多屏幕计算机等移动设备。计算设备802还可被实现为电视机818类的设备,该类包括在休闲观看环境中具有或连接到通常更大的屏幕的设备。这些设备包括电视机、机顶盒、游戏控制台等。

本文所描述的技术可由计算设备802的这些各种配置来支持,且不限于在本文描述的各具体示例。

功能也可被全部或部分通过分布式系统的使用(诸如如下所述的经由平台822在“云”820上)来实现。云820包括和/或代表资源824的平台822。平台822抽象云820的硬件(如,服务器)和软件资源的底层功能。资源824可包括可在计算机处理在位于计算设备802远程的服务器上执行时使用的应用和/或数据。资源824也可包括在因特网上和/或通过诸如蜂窝或wi-fi网络之类的订户网络上提供的服务。

平台822可抽象资源和功能以将计算设备802与其它计算设备相连接。平台822还可用于抽象资源的缩放以向经由平台822实现的资源824所遇到的需求提供对应的缩放级别。因此,在互联设备的实施例中,本文描述的功能的实现可分布在系统800上。例如,该功能可部分地在计算设备802上以及经由抽象云820的功能的平台822来实现。

结语

尽管已经用对结构特征和/或方法动作专用的语言描述了本发明,但可以理解,在所附权利要求书中定义的本发明不必受所描述的这些具体特征或动作的限制。相反,具体特征和动作是作为实现要求保护的发明的示例形式来公开的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1