一种多源接入主动配电网评估方法与流程

文档序号:14722435发布日期:2018-06-17 21:21阅读:201来源:国知局
本发明涉及一种配电网评估方法,特别是关于一种多源接入主动配电网评估方法。
背景技术
:近年来,我国分布式新能源不断接入配电网,电动汽车充电设施也日趋完善,同时,配电网运行模式也在逐步向主动配电网发展。多源接入主动配电网的评价需要综合考虑多方面因素,如分布式新能源的接纳能力和主动负荷的互动性等。这就使得配电网评估具有信息量大和评价因素复杂多样的特点。因此,传统的配电网评估机制无法继续适用于多源接入的主动配电网。因此,如何达到对多源接入主动配电网评估因素多样性和配电网主动负荷互动性进行客观评价的需求,合理地对配电网进行综合评价,实现对新能源接入和主动负荷互动等因素进行客观合理分析与评估,统一配电网评价指标体系,提高配电网规划设计水平,使配电网评估工作标准化成为目前亟需解决的技术问题。技术实现要素:针对上述问题,本发明的目的是提供一种多源接入主动配电网评估方法,该方法能够对分布式新能源接入和主动负荷参与优化运行的配电网进行分析与评估,从而对配电网进行合理和客观评价。为实现上述目的,本发明采取以下技术方案:一种多源接入主动配电网评估方法,其特征在于包括以下步骤:1)设置三级电网评估指标体系;2)根据评价内容确定各级评价指标中所包含的具体指标项:(1)将第一级指标具体设置为基础设备指标、负荷和能源接入指标和服务质量指标3个评价指标;(2)在变电设施指标、线路设施指标和信息自动化指标3个二级指标中分别设置相应的三级指标:在二级指标变电设施指标中具体设置主接线标准化率、变压器运行超过20年比例、变电站单电源线率、GIS设备使用率、高损耗配变比例、主设备完好率和主变平均负载率7个三级指标;在二级指标线路设施指标中设置有线路运行超过20年比例、线路完好率、电缆线路占比、线路长度超限线路比例、线路平均供电半径、线路截面不符合要求比例和线路轻载比例7个三级指标;在二级指标信息自动化指标中设置电压无功自动调节装置比例、变电站综合自动化率、遥控动作失效次数、遥信响应错误次数、信息系统可用率、配电自动化使用率、在线监测覆盖率7个三级指标;(4)供电可靠性指标和电能质量指标2个二级指标中分别设置相应的三级指标:在二级指标供电可靠性指标中设置系统平均停电次数、用户平均停电次数、户平均停电时间、计划停电比率、停电成本、系统平均供电可用度、系统平均停电频率7个三级指标;在二级指标电能质量指标中设置综合电压合格率、三相电压不平衡率、电压波动、电压偏差、电流总谐波畸变率和频率偏差6个三级指标;3)分别计算第三级中各指标具体数值,对各指标根据相应的归一化处理策略进行归一化处理:(1)三级指标主接线标准化率、GIS设备使用率、主设备完好率、线路完好率、线路平均供电半径、电压无功自动调节装置比例、变电站综合自动化率、配电自动化使用率、在线监测覆盖率、分布式电源接入能力、清洁能源发电占比、清洁能源消纳能力、电动汽车充换电设施容量密度、储能设备容量、主动负荷用户占比、阶梯电价实行用户比例、高可靠性电价实行用户比例、可控负荷比例、实现能效管理的用户比例、实现能效管理的负荷比例、参与电网互动的智能家居比例和系统平均供电可用度采用正比半梯形归一化策略;(2)三级指标变压器运行超过20年比例、变电站单电源线率、高损耗配变比例、线路运行超过20年比例、线路长度超限线路比例和线路截面不符合要求比例采用反比半梯形归一化策略;(3)三级指标电缆线路占比、线路轻载比例和电动汽车电池负荷比例采用梯形归一化策略;(4)三级指标遥控动作失效次数、遥信响应错误次数、系统平均停电次数、用户平均停电次数和户平均停电时间采用分段归一化策略;(5)三级指标主变平均负载率采用二次函数归一化策略;(6)三级指标信息系统可用率、分布式电源利用效率和系统平均停电频率采用递增三角化归一化策略;(7)三级指标停电成本和频率偏差采用指数归一化策略;(8)三级指标计划停电比率、综合电压合格率、三相电压不平衡率、电压波动、电压偏差和电流总谐波畸变率采用递减三角化归一化策略;4)分别对各级中所包含的指标根据层次结构标度形成判断矩阵,再根据层次分析法分别对三级指标设置权重,用两两比较法设置判断矩阵,最终得到权重向量;5)根据第三级指标的具体数值和第三级指标的权重,加权平均逐级得到第二级和第一级指标数值,最终得到某地区多源主动配电网的综合评价分值;6)重复步骤1)至步骤5),得到各地区多源接入主动配电网的综合评价值,将各地区多源接入主动配电网的综合评价值进行比较,综合评价值高的表示该地区多源接入主动配电网的综合水平高。进一步,所述正比半梯形归一化策略为:f(x)={f(x1),x∈[0,x1)C1x-C2,x∈[x1,x2)100,x∈[x2,M),]]>式中,x为未进行归一化的原指标值;f(x)为归一化后的指标值;C1、C2为归一化函数系数;x1和x2为归一化函数自变量的分段区间边界;M为原指标值的上限。进一步,所述反比半梯形归一化策略为:f(x)={100,x∈[0,x1)100-C1x1-x2(x1-x),x∈[x1,x2)100-C1,x∈[x2,M),]]>式中,x为未进行归一化的原指标值;f(x)为归一化后的指标值;C1为归一化函数系数;x1和x2为归一化函数自变量的分段区间边界;M为原指标值的上限。进一步,所述梯形归一化策略为:f(x)={C1x+C2,x∈[0,x1)100,x∈[x1,x2)C3-C4x,x∈[x2,M),]]>式中,x为未进行归一化的原指标值;f(x)为归一化后的指标值;C1、C2、C3、C4为归一化函数系数;x1和x2为归一化函数自变量的分段区间边界;M为原指标值的上限。进一步,所述分段归一化策略为:f(x)={C1,x∈[0,x1)C2,x∈[x1,M),]]>式中,x为未进行归一化的原指标值;f(x)为归一化后的指标值;C1、C2为归一化函数系数;x1和x2为归一化函数自变量的分段区间边界;M为原指标值的上限。进一步,所述二次函数归一化策略:f(x)=-(x-C1)2+100,式中,x为未进行归一化的原指标值;f(x)为归一化后的指标值;C1为归一化函数系数。进一步,所述递增三角化归一化策略:f(x)=100x,式中,x为未进行归一化的原指标值;f(x)为归一化后的指标值。进一步,所述指数归一化策略:0<C1<1,式中,x为未进行归一化的原指标值;f(x)为归一化后的指标值。进一步,所述递减三角化归一化策略:f(x)=100-C1x,式中,x为未进行归一化的原指标值;f(x)为归一化后的指标值;C1为归一化函数系数。本发明由于采取以上技术方案,其具有以下优点:1、本发明通过计算所有需要评估地区的配电网综合评价分值,综合评估值高的表示该地区多源主动配电网的综合水平高。2、本发明能达到对多源接入主动配电网评估因素多样性和配电网主动负荷互动性进行客观评价的需求,合理地对配电网进行综合评价,实现对新能源接入和主动负荷互动等因素进行客观合理分析与评估,统一配电网评价指标体系,提高配电网规划设计水平,使配电网评估工作标准化。附图说明图1是本发明的整体流程示意图;图2是本发明的正比半梯形归一化策略的取值分布特性示意图;图3是本发明的反比半梯形归一化策略取值分布特性示意图;图4是本发明的梯形归一化策略的取值分布特性示意图;图5是本发明的分段归一化策略的取值分布特性示意图;图6是本发明的二次函数归一化策略的取值分布特性示意图;图7是本发明的递增三角化归一化策略的取值分布特性示意图;图8是本发明的指数归一化策略的取值分布特性示意图;图9是本发明的递减三角化归一化策略的取值分布特性示意图。具体实施方式下面结合附图和实施例对本发明进行详细的描述。如图1所示,本发明提供一种多源接入主动配电网评估方法,该方法收集所需多源接入主动配电网的动态和静态数据并进行校核,再进行配电网评估,其包括以下步骤:1)设置三级电网评估指标体系;2)根据评价内容确定各级评价指标中所包含的具体指标项:(1)将第一级指标具体设置为基础设备指标、负荷和能源接入指标和服务质量指标3个评价指标;基础设备指标用于对配电网的基础设备的安装、使用和运行情况进行评价,其中包括地变电设备、线路和信息系统的评价;负荷和能源接入指标主要用于对该配电网中接入分布式新能源的能力和实际接入情况、主动负荷的接入和参与配电网优化运行调节的情况进行评价,从而反映配电网低碳环保水平和负荷响应特性;服务质量指标用于对配电网提供的电能质量情况进行评价,其中包括反应供电可靠性和电压电流质量的指标。在基础设备指标中具体设置为变电设施指标、线路设施指标和信息自动化指标3个二级指标;在负荷和能源接入指标中具体设置为新能源接入指标和需求侧响应指标2个二级指标;在服务质量指标中具体设置为供电可靠性指标和电能质量指标2个二级指标。(2)在变电设施指标、线路设施指标和信息自动化指标3个二级指标中分别设置相应的三级指标:在二级指标变电设施指标中具体设置主接线标准化率、变压器运行超过20年比例、变电站单电源线率、GIS设备使用率、高损耗配变比例、主设备完好率和主变平均负载率7个三级指标;在二级指标线路设施指标中设置有线路运行超过20年比例、线路完好率、电缆线路占比、线路长度超限线路比例、线路平均供电半径、线路截面不符合要求比例和线路轻载比例7个三级指标;在二级指标信息自动化指标中设置电压无功自动调节装置比例、变电站综合自动化率、遥控动作失效次数、遥信响应错误次数、信息系统可用率、配电自动化使用率、在线监测覆盖率7个三级指标;其中,变电设施指标的计算具体如下:(a)主接线标准化率主接线标准化率是指变电站不同电压等级母线主接线全部按照设计规范标准进行规范化设计和施工的变电站占所有变电站的比例,具体计算公式如下:(b)变压器运行超过20年比例变压器运行超过20年比例是指配电网中运行年限超过20年的变压器占所有变压器的比例,具体计算公式如下:(c)变电站单电源线率变电站单电源线率是指电源线仅有一条的变电站数量与所有变电站总数的比值,改指标用来描述变电站供电可靠性,具体计算公式如下:(d)GIS设备使用率GIS设备使用率是指配电网中使用GIS设备的变电站数量与所有变电站数量的比值,具体计算公式如下:(e)高损耗配变比例高损耗配变比例是指配电网中高损耗配电变压器的数量与所有变压器数量的比值,具体计算公式如下:(f)变电站主设备平均完好率变电站主设备平均完好率是指变电站中完好的主设备数量与所有变电站主设备数量比值的平均值,具体计算公式如下:(g)主变平均负载率主变平均负载率是指主变负载率的平均值,用以反映主变的运行效率,具体计算公式如下:线路设施指标的计算具体如下:(a)线路运行超过20年比例、线路运行超过20年比例是指配电网中运行年限超过20年的线路数量与配电网中所有线路总数之比,具体计算公式如下:(b)线路完好率线路完好率是指配电网中完好线路数量与所有线路数量的比值,具体计算公式如下:(c)电缆线路占比电缆线路占比是指配电网中电缆线路的条数与配电网中所有线路条数之比,具体计算公式如下:(d)线路长度超限线路比例线路长度超限线路比例是指配电网中线路长度超限的线路数量与配电网中线路总数之比,具体计算公式如下:(e)线路平均供电半径线路平均供电半径是指配电线路供电半径之和与线路条数的比值,具体计算公式如下:(f)线路截面不符合要求比例线路截面不符合要求比例是指配电网中线路截面不符合设计规范标准要求的线路数量与线路总数之比,具体计算公式如下:(g)线路轻载比例线路轻载比例是指配电网中轻载线路的条数与配电网中所有线路条数的比值,具体计算公式如下:信息自动化指标的计算具体如下:(a)电压无功自动调节装置比例电压无功自动调节装置比例是指装有电压无功自动调节装置的变电站数量与变电站总数的比值,具体计算公式如下:(b)变电站综合自动化率变电站综合自动化率是指采用变电站综合自动化系统的变电站数量与变电站总数的比值,具体计算公式如下:(c)遥控动作失效次数:是指评估期间内变电站对于调度发出的遥控动作失效的次数。(d)遥信响应错误次数:是指评估期间内变电站对于调度发出的遥信响应动作错误的次数。(e)信息系统可用率信息系统可率是指配电网的信息系统正常运转时间与正常运转时间和故障时间之和的比值,具体计算公式如下:(f)配电自动化使用率配电自动化使用率是指使用了配电自动化系统的变电站数量与变电站总数的比值,具体计算公式如下:(g)在线监测覆盖率在线监测覆盖率是指使用在线监测设备的变电站数量与变电站总数的比值,具体计算公式如下:(3)在新能源接入指标和需求侧响应指标2个二级指标中分别设置相应的三级指标:在二级指标新能源接入指标中设置分布式电源接入能力、清洁能源发电占比、清洁能源消纳能力、电动汽车充换电设施容量密度、储能设备容量、分布式电源利用效率和电动汽车电池负荷比例7个三级指标;在二级指标需求侧响应指标中设置主动负荷用户占比、阶梯电价实行用户比例、高可靠性电价实行用户比例、可控负荷比例、实现能效管理的用户比例、实现能效管理的负荷比例和参与电网互动的智能家居比例7个三级指标;新能源接入指标的计算具体如下:(a)分布式电源接入能力分布式电源接入能力是指配电网中分布式新能源的最大接入容量与最大负荷的比值,具体计算公式如下:(b)清洁能源发电占比清洁能源发电占比是指评估时期内分布式清洁能源发电电量与负荷消耗电量的比值,具体计算公式如下:(c)清洁能源消纳能力清洁能源消纳能力是指清洁能源实际发电容量与清洁能源总装机容量的比值,具体计算公式如下:(d)电动汽车充换电设施容量密度电动汽车充换电设施容量密度是指每100平方米区域内电动汽车充换电设施的容量,具体计算公式如下:(e)储能设备容量储能设备容量是指配电网中装设的储能设备的总容量,其能够反映配电网这发生功率波动时的调节能力以及系统优化运行的能力。(f)分布式电源利用效率分布式电源利用效率是指分布式电源发电容量与分布式电源所消耗能量的比值,具体计算公式如下:(g)电动汽车充换电站容量占比电动汽车充换电站容量占比是指配电网中电动汽车充换电设施总容量与该地区配电网容量的比值,具体计算公式如下:需求侧响应指标的计算具体如下:(a)主动负荷用户占比主动负荷用户占比是指主动负荷用户数量与配电网中所有用户数量之和的比值,具体计算公式如下:(b)阶梯电价实行用户比例阶梯电价实行用户比例是指实行阶梯电价的用户数与配电网中用户总数的比值,其用来反映阶梯电价的推广开展情况,其具体计算公式如下:(c)高可靠性电价实行用户比例高可靠性电价实行用户比例是指实行高可靠性电价的用户数与用户总数的比值,用以反映高可靠性电价的推广开展情况,具体计算公式如下:(d)可控负荷比例可控负荷比例是指实际可控负荷容量与具备负荷控制手段的负荷总容量之比,具体计算公式如下:(e)实现能效管理的用户比例实现能效管理的用户比例是指实现能效管理的用户数与配电网中用户总数的比值,其用来反映能效管理的推广开展状况,具体计算公式如下:(f)实现能效管理的负荷比例实现能效管理的负荷比例是指实现能效管理的负荷容量与负荷总容量的比值,其用来反映能效管理的推广开展状况,具体计算公式如下:(g)参与电网互动的智能家居比例参与电网互动的智能家居比例是指参与电网互动的智能家居数量与智能家居总数的比值,具体计算公式如下:(4)供电可靠性指标和电能质量指标2个二级指标中分别设置相应的三级指标:在二级指标供电可靠性指标中设置系统平均停电次数、用户平均停电次数、户平均停电时间、计划停电比率、停电成本、系统平均供电可用度、系统平均停电频率7个三级指标;在二级指标电能质量指标中设置综合电压合格率、三相电压不平衡率、电压波动、电压偏差、电流总谐波畸变率和频率偏差6个三级指标;其中,供电可靠性指标的计算具体如下:(a)系统平均停电次数系统平均停电次数是指配电网单位时间内发生停电的次数,具体计算公式如下:(b)用户平均停电次数用户平均停电次数是指单位时间内用户停电次数与用户总数的比值,具体计算公式如下:(c)户平均停电时间户平均停电时间是指单位时间内每个用户平均停电持续时间,具体计算公式如下:(d)计划停电比率计划停电比率是指计划停电小时数与总停电小时数的比值,反映了电网的运维管理水平,具体计算公式如下:(e)停电成本:是指由于配电网计划停电和非计划停电造成的损失,包括向用户赔付的费用和损失的售电收益,用来反应配电网的供电可靠性。(f)系统平均供电可用度系统平均供电可用度是指在评估期间内用户经受的不停电小时数与用户要求的总供电小时数之比,具体计算公式如下:(g)系统平均停电频率系统平均停电频率表征在评估时间内电网中平均每个用户经受的持续性停电的次数,具体计算公式如下:电能质量指标的计算具体如下:(a)综合电压合格率综合电压合格率是指综合反映配电网对用户供电电压质量的指标,其具体计算公式如下:综合电压合格率(%)=0.5×A类监测点合格率×100%+0.5×(B类监测点合格率+C类监测点合格率+D类监测点合格率)/3×100%(b)三相电压不平衡率三相电压不平衡率是指不满足电压不平衡度限值的公共连接点的个数与该电压等级公共连接点总数的比值,具体计算公式如下:(c)电压波动电压波动是指在评估期间内,电压急剧变化过程中电压最大值最小值之差与额定电压的比值,具体计算公式如下:(d)电压偏差电压偏差是指在评估期间内,电压急剧变化过程中电压偏离额定值的差值与额定电压的比值,具体计算公式如下:(e)电流总谐波畸变率电流总谐波畸变率是指公共连接点谐波电流占基波电流的比值,具体计算公式如下:(f)频率偏差频率偏差是指配电网系统实际频率与额定频率的偏差程度,具体计算公式如下:3)分别计算第三级中各指标具体数值,对各指标根据相应的归一化处理策略进行归一化处理:根据三级指标值的分布情况将归一化策略分为正比半梯形归一化策略、反比半梯形归一化策略、梯形归一化策略、分段归一化策略、二次函数归一化策略、递增三角化归一化策略、递减三角化归一化策略和指数归一化策略;(1)三级指标主接线标准化率、GIS设备使用率、主设备完好率、线路完好率、线路平均供电半径、电压无功自动调节装置比例、变电站综合自动化率、配电自动化使用率、在线监测覆盖率、分布式电源接入能力、清洁能源发电占比、清洁能源消纳能力、电动汽车充换电设施容量密度、储能设备容量、主动负荷用户占比、阶梯电价实行用户比例、高可靠性电价实行用户比例、可控负荷比例、实现能效管理的用户比例、实现能效管理的负荷比例、参与电网互动的智能家居比例和系统平均供电可用度采用正比半梯形归一化策略:f(x)={f(x1),x∈[0,x1)C1x-C2,x∈[x1,x2)100,x∈[x2,M),]]>式中,x为未进行归一化的原指标值;f(x)为归一化后的指标值;C1、C2为归一化函数系数;x1和x2为归一化函数自变量的分段区间边界;M为原指标值的上限;正比半梯形归一化策略的取值分布特性如图2所示。(2)三级指标变压器运行超过20年比例、变电站单电源线率、高损耗配变比例、线路运行超过20年比例、线路长度超限线路比例和线路截面不符合要求比例采用反比半梯形归一化策略:f(x)={100,x∈[0,x1)100-C1x1-x2(x1-x),x∈[x1,x2)100-C1,x∈[x2,M),]]>反比半梯形归一化策略的取值分布特性如图3所示。(3)三级指标电缆线路占比、线路轻载比例和电动汽车电池负荷比例采用梯形归一化策略:f(x)={C1x+C2,x∈[0,x1)100,x∈[x1,x2)C3-C4x,x∈[x2,M),]]>式中,C3、C4为归一化函数系数。梯形归一化策略的取值分布特性如图4所示。(4)三级指标遥控动作失效次数、遥信响应错误次数、系统平均停电次数、用户平均停电次数和户平均停电时间采用分段归一化策略:f(x)={C1,x∈[0,x1)C2,x∈[x1,M),]]>分段归一化策略的取值分布特性如图5所示。(5)三级指标主变平均负载率采用二次函数归一化策略:f(x)=-(x-C1)2+100,二次函数归一化策略的取值分布特性如图6所示。(6)三级指标信息系统可用率、分布式电源利用效率和系统平均停电频率采用递增三角化归一化策略:f(x)=100x,递增三角化归一化策略的取值分布特性如图7所示。(7)三级指标停电成本和频率偏差采用指数归一化策略:f(x)=C1x,0<C1<1,]]>指数归一化策略的取值分布特性如图8所示。(8)三级指标计划停电比率、综合电压合格率、三相电压不平衡率、电压波动、电压偏差和电流总谐波畸变率采用递减三角化归一化策略:f(x)=100-C1x,递减三角化归一化策略的取值分布特性如图9所示。4)分别对各级中所包含的指标根据层次结构标度形成判断矩阵,再根据层次分析法分别对三级指标设置权重,用两两比较法设置判断矩阵,最终得到权重向量;其中,两两比较法的轻重程度的标度如表1所示。表1取值标度1i因素与j因素同等重要3i因素比j因素略重要5i因素比j因素较重要7i因素比j因素非常重要9i因素比j因素特别重要2,4,6,8以上两判断之间的中间状态(1)对m个指标进行打分,得到判断矩阵R为:R=r11r12...r1mr21r22...r2m............rm1rm2...rmm]]>判断矩阵R中对角元素取值均为1,rij=1/rji,i=1,2,…m;j=1,2,…m。(2)根据判断矩阵R计算系数矩阵R′:R′=a11a12...a1ma21a22...a2m............am1am2...amm]]>式中,aij=aijΣi=1mrij,i=1,2...m;j=1,2...m.]]>(3)按照行对系数矩阵R′求和得到未进行归一化处理的权重向量B=[b1,b2,...,bm]T,其中,(4)对权重向量B进行归一化处理,得到最终的权重向量W=[w1,w2,...,wm]T,其中,wi=biΣi=1mbi,i=1,2...m.]]>5)根据第三级指标的具体数值和第三级指标的权重,加权平均逐级得到第二级和第一级指标数值,最终得到某地区多源主动配电网的综合评价分值:利用步骤3)中计算得到的第三级各指标值,结合步骤4)中得到的第三级指标权重,对第三级各指标进行加权平均,从而得到第二级指标值;利用步骤4)得到第二级指标权重,对第二级各指标进行加权平均,从而得到第一级指标值;利用步骤4)得到第一级指标权重,对第一级各指标进行加权平均,从而得到待评估多源接入主动配电网的综合评价值。6)重复步骤1)至步骤5),得到各地区多源接入主动配电网的综合评价值,将各地区多源接入主动配电网的综合评价值进行比较,综合评价值高的表示该地区多源接入主动配电网的综合水平高。上述各实施例仅用于说明本发明,各个步骤都是可以有所变化的,在本发明技术方案的基础上,凡根据本发明原理对个别步骤进行的改进和等同变换,均不应排除在本发明的保护范围之外。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1