一种混响场随机面压载荷模型的等效技术的制作方法

文档序号:12177495阅读:336来源:国知局
一种混响场随机面压载荷模型的等效技术的制作方法与工艺

本发明属于随机面压载荷模型等效技术领域,具体涉及一种混响场随机面压载荷模型的一种等效技术。



背景技术:

航天器在任务周期内所受到的高强、宽带噪声环境会引起机械振动,这可能造成结构声疲劳破坏或精密仪器、仪表失灵。因此,航天器在发射前必须在地面进行噪声环境试验。混响场试验可有效考验航天器的声振特性,是最长见的噪声环境试验方法之一。混响室一般在中低频段具有较好的工作性能,但在高频段所产生的声场强度较低。此外,混响室的尺寸越大,产生相同强度的声场时,混响室的功耗就越高。这制约了较大结构的混响场试验分析,尤其是中高频段混响场试验分析。

为节约设计成本,通常采用数值仿真分析手段辅助试验分析。在仿真分析过程中,需要将混响场随机面压载荷施加于结构上。目前公认的一种混响场随机面压载荷模型中,低频段的相干长度较长,高频段的相干长度较短。在采用有限元法中的模态叠加法分析结构在混响场作用下的随机响应时,随着分析频率的升高,混响场载荷的相干长度缩短,要求有限元网格的尺寸越小,这导致计算量呈几何级数增长。因此,在较高频段,需采取有效措施以解决上述混响场随机面压载荷模型分析效率低下的问题,进而缩短设计周期,节约设计成本。



技术实现要素:

发明目的:为了克服现有技术中存在的不足,针对现有的一种混响场随机面压载荷模型在应用中存在的问题,本发明提供了一种该混响场随机面压载荷模型的等效技术,该技术可有效提高混响场作用下结构动响应仿真分析的效率。

技术方案:为实现上述目的,本发明采用的技术方案为:

一种混响场随机面压载荷模型的等效技术,包括以下步骤:

(1)混响场随机面压载荷模型经等效后形成等效完全随机面压载荷模型;

(2)确定所述等效完全随机面压载荷模型的等效相关函数的量级;

(3)根据结构模型和混响场随机面压载荷模型确定所述等效随机面压载荷模型的适用频率范围。

进一步的,所述步骤(1)中的混响场随机面压载荷模型为:

其中,Sppxy,ω)为空间上任意两点处面压载荷之间的互谱,ξx为两点在x轴方向上的距离,ξy为两点在y轴方向上的距离,ω为角频率,S0为载荷功率谱的量级,k0=ω/c0为声波数,c0=340m/s为声速。

进一步的,所述步骤(1)中的等效完全随机面压载荷模型为:

Sppxy,ω)=S0Ceq(ω)δ(ξx)δ(ξy) (2)

其中Ceq(ω)为等效相关函数的量级,函数δ(ξ)为克罗内克函数:

进一步的,所述步骤(2)中等效完全随机面压载荷模型的等效相关函数的量级Ceq(ω)满足下式:

进一步的,所述等效完全随机面压载荷模型的等效相关函数的量级Ceq(ω)为:

进一步的,所述步骤(3)中的等效完全随机面压载荷模型的适用频率范围为f≥fcrit,fcrit为临界频率。

进一步的,所述临界频率为:

fcrit=fc+c0/l0 (6)

其中fc为一致性频率,l0=1m为单位长度。

进一步的,所述一致性频率fc为使结构弯曲波长λB(ω)及混响场载荷特征波长λD(ω)相等即λB(ω)=λD(ω)时的一致性频率:

其中,E为材料弹性模量,ρ为材料密度,ν为材料泊松比,h为结构表面板类构件厚度。

有益效果:本发明提供的一种混响场随机面压载荷模型的等效技术,是一种将混响场载荷模型等效为完全随机面压载荷模型的技术,该技术可有效降低混响场面压载荷作用下结构动响应分析的计算量,缩短设计周期,节约设计成本。

附图说明

图1为本发明的逻辑流程框图;

图2是一个矩形简支板的示意图;

图3是矩形简支板上点A处的位移响应功率谱密度示意图。

具体实施方式

下面结合附图对本发明作更进一步的说明。

如图1所示为一种混响场随机面压载荷模型的等效技术的方法逻辑流程框图,主要包括以下步骤:

步骤(1)混响场随机面压载荷模型经等效后形成等效完全随机面压载荷模型;

(1.1)混响场随机面压载荷模型,其在空间上任意两点处面压载荷之间的互谱为:

其中,ξx为两点在x轴方向上的距离,ξy为两点在y轴方向上的距离,ω为角频率,S0为载荷功率谱的量级,k0=ω/c0为声波数,c0=340m/s为声速。

(1.2)等效完全随机面压载荷模型,其在空间上任意两点处面压的互谱为:

Sppxy,ω)=S0Ceq(ω)δ(ξx)δ(ξy) (9)

其中,Ceq(ω)为等效相关函数的量级,函数δ(ξ)为克罗内克函数:

步骤(2)确定所述等效完全随机面压载荷模型的等效相关函数的量级Ceq(ω),进而确定该等效完全随机面压载荷模型;

等效完全随机面压载荷模型的等效相关函数的量级Ceq(ω)满足下式:

求解式(11)得等效完全随机面压载荷模型的等效相关函数的量级Ceq(ω)为:

将式(12)代入式(9),得等效完全随机面压载荷模型为:

步骤(3)根据结构模型和混响场随机面压载荷模型确定所述等效随机面压载荷模型的适用频率范围,具体包括:

(3.1)确定结构的弯曲波长:

其中,E为材料弹性模量,ρ为材料密度,ν为材料泊松比,h为结构表面板类构件厚度。

(3.2)确定混响场载荷的特征波长:

λD(ω)=2πc0/ω (15)

(3.3)计算使结构弯曲波长及混响场载荷特征波长相等时(λB(ω)=λD(ω))的一致性频率:

(3.4)计算等效完全随机面压载荷模型适用的临界频率:

fcrit=fc+c0/l0 (17)

上式中l0=1m为单位长度。

(3.5)确定步骤(2)中的等效完全随机面压载荷模型的适用频率范围为f≥fcrit

实施例

如图2所示,以一个矩形简支板为例,计算一致性频率。矩形简支板的尺寸为:x轴向长度Lx=1m,y轴向长度Ly=1m,厚度h=0.01m。矩形简支板所用材料的参数为:弹性模量E=120GPa,材料密度ρ=7800kg/m3,泊松比υ=0.3。将各参数的取值代入式(16),得fc=1200Hz。

步骤(3.4):计算等效完全随机面压载荷模型适用的临界频率:

fcrit=fc+c0/l0 (18)

上式中l0=1m为单位长度。将fc=1200Hz代入式(18),得fcrit=1540Hz。

步骤(3.5):确定步骤(2)中的等效完全随机面压载荷模型的适用频率范围为f≥fcrit,即当分析频率f≥1540Hz时,在本例中,可由式(13)所示的等效完全随机面压载荷模型代替式(8)所示的混响场随机面压载荷模型。

将由上述步骤获得的等效完全随机面压载荷施加于图2所示的简支矩形板上,计算获得点A(0.3m,0.2m)处的位移响应功率谱密度(以dB为单位,参考值为1m2Hz-1),如图3所示。图3中结果表明,在本例中,当f≥fcrit,即f≥1540Hz时,上述步骤获得的等效完全随机面压载模型可有效代表混响场随机面压载荷模型。

本实施例最终取得的效果说明,本发明所提出的方法能有效地将混响场随机面压载荷模型转换成等效完全随机面压载荷模型,提高后续响应分析的效率。

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1