基于密封生命周期的固体火箭发动机密封寿命预测方法与流程

文档序号:11286869阅读:706来源:国知局
基于密封生命周期的固体火箭发动机密封寿命预测方法与流程

本发明涉及固体火箭发动机密封技术领域,具体为一种基于密封生命周期的固体火箭发动机密封寿命预测方法。



背景技术:

固体火箭发动机(srm)是导弹和航天火箭的重要组件,它的研究工作与航天安全息息相关。固体火箭在装配过程中,有密封性能要求。其密封性能对固体火箭能否安全工作,具有重要意义。

为延长固体火箭发动机的使用寿命,防止发动机工作时,壳体内高温、高压燃气的外泄,以及保证在贮存和运输期间壳体的防潮防腐,在各个结构系统连接部位都应有良好的密封。否则,发动机点火工作时,外泄燃气不仅会破坏发动机的内弹道性能,还会烧穿壳体的连接部位,引起灾难性事故;在低温环境下,外界侵入的潮湿气体会在药柱表面生成一层冰霜,使发动机点火困难;在高空中,壳体内的气压会与外界一样低,造成点火困难;而在存贮和运输期间,又使药柱受潮变质发粘等。因此,固体发动机结构系统的密封特性研究是提高其工作可靠性的重要环节之一。

固体火箭的密封性能,主要通过密封指标泄漏率、寿命和使用条件(压力p、线速度v、温度t)来表征。其中寿命预测是固体火箭发动机密封性能研究的重要内容。进行合理的寿命预测,可以提高密封安全系数,减少安全事故的发生,同时有利于固体火箭发动机存贮时的保养维护。

现有的对固体火箭发动机密封寿命的预测方法中,主要考虑了存储阶段橡胶密封圈的老化现象对密封寿命的影响,并未对工作阶段橡胶密封圈的回弹现象进行分析。这就造成所得的寿命预测结果和实际寿命相差较大,参考价值比较有限。提高密封寿命预测的可靠性,是固体火箭发动机密封性能研究的一个难点。



技术实现要素:

有鉴于此,本发明的目的就是提供一种基于密封生命周期针对固体火箭发动机的密封寿命预测方法。它以固体火箭发动机拧紧完成后的存储阶段和工作阶段作为一个密封生命周期,在硅橡胶老化模型,密封圈压缩永久变形率与压缩变形率的关系表达式,简化后的密封圈回弹模型,橡胶mooney-rivlin模型以及石棉橡胶的泄漏率模型的基础上,建立了基于密封生命周期的固体火箭发动机密封圈密封寿命预测模型,能有效的预测固体火箭发动机的存贮寿命,有利于对所存贮的固体火箭发动机进行维护与保养,确保固体火箭发动机能安全可靠的工作。

本发明的目的是通过这样的技术方案实现的,具体步骤如下:

1)确定硅橡胶老化模型,并确定老化模型中的待定系数;

2)以步骤1)所得硅橡胶老化模型为已知条件,确定硅橡胶密封圈压缩永久变形率与压缩变形率的关系表达式,从而得到硅橡胶密封圈老化后的压缩变形率;

3)以步骤2)所得硅橡胶老化后的压缩变形率为已知条件,将已有的密封圈回弹特性模型进行线性化简化,从而得到硅橡胶密封圈发生回弹现象后的压缩变形率;

4)以步骤3)所得硅橡胶密封圈发生回弹现象后的压缩变形率为已知条件,确定硅橡胶密封圈穆尼—瑞林(mooney-rivlin)模型,从而得到固体火箭发动机工作时的工程应力;

5)确定石棉橡胶垫的多孔介质模型,并确定模型中的待定系数;

6)以步骤4)所得密封圈工程应力为已知条件,带入步骤5)所得的多孔介质模型,可得在最大允许泄漏率下固体火箭发动机的老化存储时间,从而得到固体火箭发动机的密封寿命。

进一步,步骤1)中硅橡胶的老化模型可以用幂指数老化模型可以表示为:

f(p)=bexp(-ktα)

其中,f(p)表征硅橡胶的老化性能,对压缩永久变形率,f(p)=1-ε,ε为时间t时硅橡胶的压缩永久变形率。b和α为老化模型参数,0<α≤1。

进一步,步骤1)中老化反应速率k与热力学温度t符合arrhenius公式,可以表示为:

k=zexp(-e/rt)

其中,z为频率因子,e为表观活化能,r为气体常数。

进一步,步骤1)中确定了老化模型待定系数后,硅橡胶在常温下的老化模型为:

f(p)=0.9603exp(-0.0027t0.57)

进一步,步骤2)中橡胶密封圈压缩永久变形率定义为:

其中,h0为橡胶试样压缩前的厚度,h1为橡胶试样被均匀压缩后的规定厚度,h2为24h后橡胶试样从夹具中取出且不再发生形变后的厚度。

进一步,步骤2)中硅橡胶密封圈压缩变形率和压缩永久变形率的关系表达式为:

其中,λa为硅橡胶密封圈的压缩变形率。

进一步,步骤2)中硅橡胶老化后的压缩变形率为:

其中,λb为硅橡胶密封圈老化后的压缩变形率。

进一步,步骤3)中已有的橡胶密封圈回弹模型为:

其中,c1、c2为力学性能常数;c为螺纹连接简化模型刚度,l为硅橡胶密封圈原长,λ′为发生回弹后的硅橡胶密封圈压缩变形率,δp为固体火箭发动机内外气压差,a2为硅橡胶密封圈和壳体的接触面积,a3为气压差对壳体的作用面积。

进一步,步骤3)中对橡胶密封圈回弹模型进行线性化简化后为:

进一步,步骤3)中将硅橡胶老化后的压缩变形率带入到简化后的密封圈回弹模型后可以表示为:

其中,λ″为经过老化和回弹后的硅橡胶密封圈压缩变形率。

进一步,步骤4)中橡胶密封圈穆尼—瑞林(mooney-rivlin)模型为:

w=c1(i1-3)+c2(i2-3)

其中,λ为变形率,定义为:λi=δl/l(i=1,2,3),δl为压缩量。

进一步,步骤4)中所得固体火箭发动机硅橡胶密封圈受压缩时的工程应力为:

其中,σ为硅橡胶密封圈压缩时的工程应力。

进一步,步骤5)中气体通过垫片的泄漏率方程为:

其中,al、am、nl、nm为常数,其值可由实验得到,lpv为pv泄漏率,σr为硅橡胶密封圈发生泄漏时的工程应力,即σr=σ,p1为固体火箭发动机壳体外的气压,p2为固体火箭发动机壳体内的气压,pm=(p2+p1)/2,m为气体分子量,l为垫片的有效宽度,η为介质的动力粘度,t为气体绝对温度。

进一步,步骤5)中固体火箭发动机工作时的泄漏率模型为:

进一步,步骤5)中固体火箭发动机工作时针对不同直径大小的垫片进行的泄漏率预测的修正模型为:

其中,d1为实验垫片的直径,d2为预测垫片的直径。

进一步,步骤6)中固体火箭发动机基于密封生命周期的密封寿命预测模型为:

由于采用了上述技术方案,本发明具有以下优点:

1.提供了一种基于密封生命周期的固体火箭发动机密封寿命预测方法,提高了寿命预测的可靠性和准确性。

2.建立了密封圈压缩变形率与压缩永久变形率的关系表达式,使之成为密封圈存储阶段和工作阶段特性连接的桥梁。

3.建立了适用于硅橡胶在常温下的老化模型。

4.建立了适用于固体火箭发动机的泄漏率预测模型。

5.针对密封圈回弹特性模型进行线性化简化处理,方便了计算分析。

本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书和权利要求书来实现和获得。

附图说明

为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:

图1为硅橡胶常温下的老化曲线;

图2为固体火箭发动机泄漏率预测曲线;

图3为固体火箭发动机泄漏率与存储时间关系理论曲线;

图4为本发明流程图。

具体实施方式

本发明的实施过程包括:1)确定硅橡胶常温下的老化模型;2)确定硅橡胶密封圈老化后的压缩变形率;3)确定硅橡胶密封圈经过老化和回弹后的压缩变形率;4)确定固体火箭发动机工作时硅橡胶密封圈的工程应力;5)确定固体火箭发动机基于密封生命周期的寿命预测模型;6)确定在最大允许泄漏率下的老化存储时间。

(1):确定硅橡胶常温下的老化模型

硅橡胶的老化反应速率和老化温度表达式为:

k=7863.6exp(-4706.3/t)

则在常温下,硅橡胶的老化模型为:

f(p)=0.9603exp(-0.0027t0.57)

(2):确定硅橡胶密封圈老化后的压缩变形率

取厚度为2mm的硅橡胶密封圈进行压缩,压缩量为0.3mm,压缩变形率为15%,则经过时间t老化后的密封圈压缩率为:

(3):确定硅橡胶密封圈经过老化和回弹后的压缩变形率

为确定硅橡胶密封圈经过老化和回弹后的压缩变形率,首先需要确定固体火箭发动机工作时的内外气压差,此处实验气压差δp取为0.5mpa。某型号固体火箭发动机的相关的回弹特性参数经过计算后可得螺纹连接简化模型刚度c为5.5mpa,密封圈和壳体的接触面积a2为876.5mm2,气压差对壳体的作用面积a3为18385mm2

将已知条件带入到回弹特性简化模型得:

(4):确定固体火箭发动机工作时硅橡胶密封圈的工程应力

将压缩变形率λ′带入到橡胶穆尼—瑞林(mooney-rivlin)模型可得固体火箭发动机工作时的工程应力。

其中,常数c1为0.88,常数c2为0.044。

(5):确定固体火箭发动机基于密封生命周期的寿命预测模型

对石棉橡胶垫进行泄漏率检测实验,得到实验垫片的泄漏率模型为:

垫片的直径不同,对应的泄漏率也不同,且垫片直径越大,泄漏率越大,则针对不同直径的垫片进行泄漏率预测时,需要对实验垫片的泄漏率模型进行修正,修正后的结果为:

其中实验垫片的直径d1为69mm,预测垫片的直径d2为160mm。

(6):确定在最大允许泄漏率下的老化存储时间

将密封圈的工程应力带入到泄漏率预测模型可得如下的密封圈密封寿命预测模型,通过预测模型可得在最大允许泄漏率下的存储老化时间。当最大允许泄漏率为0.45pa·m3/s时,实验型号固体火箭发动机的存储老化时间为11.25年。

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1