一种基于机器视觉的电力屏柜硬压板状态识别方法与流程

文档序号:14609861发布日期:2018-06-05 20:36阅读:402来源:国知局

本发明涉及图像处理、机器视觉和电力智能巡检领域,将图像处理、机器学习技术应用于电力智能巡检中,具体的说是一种基于机器视觉的电力屏柜硬压板状态识别方法。



背景技术:

电力屏柜硬压板的投(连接)、退(断开)操作是变电站的倒闸操作中二次设备操作的主要项目,硬压板是保护装置联系外部接线的桥梁和纽带,关系到保护的功能和动作出口能否正常发挥作用。

目前,电力屏柜硬压板的核对工作基本由人工完成,由电力作业人员手持纸质硬压板核对表,到设备处与实际硬压板位置进行核对。由于站内设备硬压板数量较大,核对工作费时费力,而且人工核对容易出现遗漏差错,一旦硬压板位置错误,就会存在设备运行风险,对供电安全造成极大威胁。

利用图像处理技术的一些方法大多利用硬标定压板颜色或是图像投影进行分割,对压板外观极其倚赖,一旦硬压板颜色和标定不一致,或者出现其他多种颜色硬压板,或者光线使得颜色不可见或者产生色偏等,此类方法基本失效。

近年来,随着科技的发展,以变电站移动数据采集器为代表的变电站移动式巡检装置陆续出现,实现自动完成变电站日常设备巡视、红外测温、操作前后设备状态检查等工作,从而大大提高对变电站设备巡视的工作效率和质量,降低人员劳动强度和工作风险,提升变电站智能化水平,为变电站无人巡检提供强大的技术支撑,而基于机器视觉技术的智能巡检为变电站的智能化提供了重要辅助手段。



技术实现要素:

为了克服现有技术上的不足,本发明提供一种基于机器视觉的电力屏柜硬压板状态识别方法,借助于图像采集设备,如电力作业机器人、手持设备(手机、PAD)等设备,拍摄包含硬压板的电力屏柜场景图像,利用机器学习对硬压板状态进行训练、学习,本发明无需对设备进行何改动就可以准确快速完成硬压板状态的识别,并且能够训练和学习识别不同外观和不同颜色的硬压板,通用性和扩展性较强。

为了达到上述目的,本发明采用的技术方案为:

一种基于机器视觉的电力屏柜硬压板状态识别方法,其特征在于包括以下步骤:

(1-1)采集硬压板样本图像并标定,构建硬压板样本库;

(1-2)读取硬压板样本库中所有硬压板图像及其标签,训练、学习得到目标定位分类器和状态识别分类器;

(1-3)采集包含硬压板的电力屏柜图像并保存相关信息,保存的相关信息包括屏柜名称、编号、硬压板行列数和每个硬压板所关联的功能及其对应状态;

(1-4)采集当前时刻包含硬压板的屏柜图像为待检测图像;

(1-5)针对步骤(1-4)中待检测图像做预处理,得到预处理图像;

(1-6)利用步骤(1-2)中目标定位分类器,定位出步骤(1-5)中预处理图像包含的全部硬压板子图像;

(1-7)根据步骤(1-3)中的信息,对全部硬压板子图像进行排序得到硬压板排序子图像;

(1-8)利用步骤(1-2)中状态识别分类器处理步骤(1-7)中硬压板排序子图像得到对应的当前硬压板状态;

(1-9)当前硬压板状态与步骤(1-3)中的各对应状态比对,输出状态不一至的硬压板信息。

所述步骤(1-1)中构建硬压板样本库步骤为:

(2-1)采集不同状态的硬压板样本图像;

(2-2)对每一张硬压板样本图像标定当前状态。

所述步骤(1-2)中训练、学习得到目标定位分类器和目标识别分类器步骤为:

(3-1)计算硬压板样本库中硬压板图像的方向梯度直方图特征(HOG);具体为:

(3-1-1)计算硬压板图像的梯度图像:

Gx(x,y)=I(x+1,y)-I(x-1,y)

Gy(x,y)=I(x,y+1)-I(x,y-1)

其中:I(x,y)为硬压板图像的像素值,Gx(x,y)为硬压板图像x方向梯度图像的像素值,Gy(x,y)为硬压板图像y方向梯度图像的像素值;x、y分别像素点坐标;

(3-1-2)计算每个像素点的梯度幅值和方向;

其中:g(x,y)为像素点(x,y)的梯度幅值,a(x,y)为像素点(x,y)的梯度方向的角度;

(3-1-3)将图像划分成细胞单元(cell),8*8个像素为一个cell,相邻的cell之间不重叠;

(3-1-4)统计每个cell的梯度方向直方图:梯度方向由0-360度划分为8等分,落在相同角度区间的像素点梯度幅值累加后得到一个8维向量;

(3-1-5)2*2个cell构成一个块(block),当前块内每个cell的特征向量级联得到一个4*8维向量,表征此block;

(3-1-6)将所有block的特征向量级联起来得到图像最终的方向梯度直方图特征向量;

(3-2)计算硬压板样本库中硬压板图像的局部二值模式特征(LBP),具体为:

(3-2-1)对图像做局部二值模式编码:

其中:LBP(x,y)为像素点(x,y)处的局部二值模式编码值;p为像素点(x,y)邻域的第p个像素;L为邻域大小,一般取8;ip为像素点(x,y)邻域的第p个像素的像素值;ic为像素点(x,y)处像素值;s(x)为邻域取值函数。

(3-2-2)将局部二值模式编码图像划分为16*16的细胞单元(cell),相邻的cell之间不重叠;

(3-2-3)统计每个cell的特征直方图,获得一个256维特征向量;

(3-2-4)将所有cell的特征向量级联起来得到图像最终的局部二值模式特征向量;

(3-3)利用支持向量机(SVM)训练得到硬压板目标定位分类器;

(3-4)利用支持向量机(SVM)训练得到硬压板状态识别分类器。

所述步骤(1-5)图像预处理包含对待检测图像进行灰度化、亮度检测、gamma校正和比度受限的自适应直方图均衡化(CLAHE);预处理的步骤为:

(4-1)将待检测图像灰度化,得到灰度图像;

(4-2)对灰度图像亮度检测:统计灰度图像距离参考亮度的灰度平均偏移值:

其中:E代表平均偏移值;mean代表参考偏移值,一般取128;G(x,y)代表图像在(x,y)处灰度值;w代表图像宽度;h代表图像高度;

统计图像加权偏移:

其中D代表加权偏移;i代表灰度值,取值范围0-255;E代表灰度平均偏移值;mean代表参考偏移值,取128;Hist(i)代表图像中灰度值为i的点个数;w代表图像宽度;h代表图像高度;如果|E|>D,图像亮度存在异常,E>0表示过量,E<0表示过暗,根据E的值设定gamma校正变换参数;

(4-3)利用gamma校正变换参数,对灰度图像进行gamma校正得到gamma校正图像,gamma校正步骤如下:

f(I)=Iγ

其中:f(I)为校正之后的结果,I为原始灰度图像,γ为gamma校正变换参数;

当γ<1时,在低灰度区域内动态范围变大,高灰度区域内动态范围变小,同时图像整体的灰度值变大,进而增强图像对比度;

当γ>1时,低灰度区域内动态范围变小,高灰度区域在动态范围变大,降低了低灰度区域图像对比度,提高了高灰度区域图像对比度,同时图像整体的灰度值变小;

(4-4)对gamma校正之后的图像利用CLAHE方法进行增强,进一步突出硬压板在图像中的特征。

所述步骤(1-6)定位出步骤(1-5)中预处理图像包含的全部硬压板子图像步骤为:

(5-1)计算待检测图像的HOG特征向量;

(5-2)调用步骤(1-2)中目标定位分类器判断当前图像块所属类别,计算置信度,将符合条件的结果保存;考虑到不同屏柜的压板在图像中的尺度存在差异,利用图像金字塔实现对各种尺度压板的检测,即对图像进行多种比例的缩放,进行检测;当整个图像金字塔遍历完成,将得到的结果进行合并、删除、排序,得到最终压板定位结果。

所述步骤(1-8)得到硬压板图像当前对应状态步骤为:

(6-1)计算硬压板图像的HOG特征向量和LBP特征向量;

(6-2)调用步骤(1-2)中状态识别分类器对硬压板排序子图像进行分类,判断硬压板的投或退状态。

所述步骤(1-9)输出状态不一至的硬压板信息步骤为:

将步骤(6-2)中硬压板状态与步骤1-3)中硬压板状态比对,记录状态不一致的硬压板信息并输出。

与现有技术相比,本发明的有益效果有以下几点:

(1)采用图像处理、机器视觉的方式对压板状态进行识别,无需对现有设备进行任何改造,便于设备的维护和安装;操作简单,对作业人员几乎没有要求,只需对准位置拍照即可定位到问题压板,实现傻瓜式巡视;

(2)利用机器学习对压板状态进行训练、学习,对压板外观、颜色等信息没有特殊要求,对设备无需任何改动;

(3)当出现新种类的压板,只需将其样本放入样本库中进行训练、学习,得到新的分类器,即可完成新种类的识别,具有较好的扩展性;将两种特征结合一起进行识别,具有较强的鲁棒性;

将图像处理、机器视觉应用于智能巡检,降低了巡检成本,而且为后期数据收集、数据分析打下基础。

附图说明

图1是本发明的流程图。

具体实施方式

下面结合附图和具体实施例对本发明做进一步说明,但本发明的保护范围并不限于此。

如图1所示,本发明的方法步骤如下:

第一步、采集硬压板样本图像并标定,构建硬压板样本库:

(1-1)采集不同状态的硬压板样本图像;

(1-2)对每一张硬压板样本图像标定当前状态。

第二步、读取硬压板样本库中所有硬压板图像及其标签,训练、学习得到目标定位分类器和状态识别分类器:

(2-1)计算硬压板样本库中硬压板图像的方向梯度直方图特征(HOG);具体为:

(2-1-1)计算硬压板图像的梯度图像:

Gx(x,y)=I(x+1,y)-I(x-1,y)

Gy(x,y)=I(x,y+1)-I(x,y-1)

其中:I(x,y)为硬压板图像的像素值,Gx(x,y)为硬压板图像x方向梯度图像的像素值,Gy(x,y)为硬压板图像y方向梯度图像的像素值;x、y分别像素点坐标,

(2-1-2)计算每个像素点的梯度幅值和方向;

其中:g(x,y)为像素点(x,y)的梯度幅值,a(x,y)为像素点(x,y)的梯度方向的角度;

(2-1-3)将梯度图像划分成小细胞单元(cell),8*8个像素为一个cell,相邻的cell之间不重叠;

(2-1-4)统计每个cell的梯度方向直方图:梯度方向由0-360度划分为8等分,落在相同角度区间的像素点梯度幅值累加后得到一个8维向量;

(2-1-5)2*2个cell构成一个块(block),当前块内每个cell的特征向量级联得到一个4*8维向量,表征此block;

(2-1-6)将所有block的特征向量级联起来得到图像最终的方向梯度直方图特征向量;

(2-2)计算硬压板样本库中硬压板图像的局部二值模式特征(LBP);

(2-2-1)对图像做局部二值模式编码:

其中:LBP(x,y)为像素点(x,y)处的局部二值模式编码值;p为像素点(x,y)邻域的第p个像素;L为邻域大小,一般取8;ip为像素点(x,y)邻域的第p个像素的像素值;ic为像素点(x,y)处像素值;s(x)为邻域取值函数。

(2-2-2)将局部二值模式编码图像划分为16*16的细胞单元(cell),相邻的cell之间不重叠;

(2-2-3)统计每个cell的特征直方图,获得一个256维特征向量;

(2-2-4)将所有cell的特征向量级联起来得到图像最终的局部二值模式特征向量;

(2-3)利用支持向量机(SVM)训练得到硬压板目标定位分类器;

(2-4)利用支持向量机(SVM)训练得到硬压板状态识别分类器;

第三步、采集包含硬压板的电力屏柜图像并保存相关信息,保存的相关信息包括屏柜名称、编号、硬压板行列数和每个硬压板所关联的功能及其当前状态;

第四步、采集当前时刻包含硬压板的屏柜图像为待检测图像;

第五步、针对第四步中待检测图像做预处理,得到预处理图像;

(5-1)将待检测图像灰度化,得到灰度图像;

(5-2)对灰度图像亮度检测:统计灰度图像距离参考亮度的灰度平均偏移值:

其中:E代表平均偏移值;mean代表参考偏移值,一般取128;G(x,y)代表图像在(x,y)处灰度值;w代表图像宽度;h代表图像高度;

统计图像加权偏移:

其中D代表加权偏移;i代表灰度值,取值范围0-255;E代表灰度平均偏移值;mean代表参考偏移值,取128;Hist(i)代表图像中灰度值为i的点个数;w代表图像宽度;h代表图像高度;如果|E|>D,图像亮度存在异常,E>0表示过量,E<0表示过暗,根据E的值设定gamma校正变换参数;

(5-3)利用gamma校正变换参数,对待检测图像进行gamma校正得到gamma校正图像,gamma校正步骤如下:

f(I)=Iγ

其中:f(I)为校正之后的结果,I为原始输入灰度图像,γ为gamma校正变换参数;

当γ<1时,在低灰度区域内动态范围变大,高灰度区域内动态范围变小,同时图像整体的灰度值变大,进而增强图像对比度;

当γ<1时,低灰度区域内动态范围变小,高灰度区域在动态范围变大,降低了低灰度区域图像对比度,提高了高灰度区域图像对比度,同时图像整体的灰度值变小;

(5-4)对gamma校正之后的图像利用CLAHE算法进行增强,进一步突出压板在图像中的特征。

第六步、利用第二步中目标定位分类器,定位出第五步中预处理图像包含的全部硬压板子图像;

第七步、据第三步中的信息,对硬压板子图像排序得到硬压板排序子图像;

(6-1)计算待检测图像的HOG特征向量;

(6-2)调用第二步中目标定位分类器判断当前图像块所属类别,计算置信度,将符合条件的结果保存;考虑到不同屏柜的压板在图像中的尺度存在差异,本发明利用图像金字塔实现对各种尺度压板的检测,即对图像进行多种比例的缩放,进行检测;当整个图像金字塔遍历完成,将得到的结果进行合并、删除、排序,得到最终压板定位结果。

第八步、利用第二步中目标识别分类器处理第七步中硬压板排序子图像得到对应的硬压板状态;

(8-1)计算硬压板图像的HOG特征向量和LBP特征向量;

(8-2)调用第二步中状态识别分类器对其进行分类,判断硬压板投或退等状态。

第九步、当前硬压板状态与第三步中的状态比对,输出状态不一至的硬压板信息。

将步骤(8-2)中硬压板状态与步骤第三步中硬压板状态比对,记录状态不一致的硬压板信息并输出。

本发明所述的特征提取、匹配,在图像处理领域属于现有基础技术,不做过多解释。以上实施例仅用以说明本发明技术方案而非限制,尽管参照优选对本发明进行了详细说明,图像处理技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1