探索元胞自动机模型的尺度敏感性的耦合方法与流程

文档序号:15798895发布日期:2018-11-02 21:17阅读:515来源:国知局
探索元胞自动机模型的尺度敏感性的耦合方法与流程

本发明属于探索方法技术领域,具体涉及一种探索元胞自动机模型的尺度敏感性的耦合方法。

技术背景

土地资源为人类生存和发展奠定了物质基础,人们根据自身活动需求,对土地资源进行了不同程度上的开发和利用。近年来,随着经济的快速发展和人口数量的不断提高,人们对土地资源的开发和利用强度越来越大,在一定程度上改变了土地利用的空间格局,这对自然和社会环境带来了很大的影响。因此,城市决策者若要合理地利用和开发土地资源,需准确掌握土地利用信息和变化动态情况,并能够模拟和预测土地利用变化及其空间演变。

目前,国内外学者们已经构建了很多用于研究土地利用变化信息的模型,例如马尔科夫链、多因素统计、系统动力学理论、clue模型、多智能体和元胞自动机等。其中元胞自动机模型以其强大的模拟复杂系统的能力、简洁的建模方式、且与栅格数据能够很好地结合的优势,迅速成为研究土地利用变化模拟的支撑手段和研究热点。此外,随着对地观测技术的快速发展,卫星遥感影像为研究土地利用提供了丰富的数据源,极大地促进了元胞自动机模型在模拟城市土地利用变化方面的研究。

然而,在实际应用中,元胞自动机模拟的效果受到元胞大小、邻域大小、邻域类型、转换规则和时间步长等综合的影响,反映为不同程度的空间尺度敏感性。目前,国内外的学者们已经对元胞自动机模型中的转换规则进行了全面的研究,逐渐把视线转移到元胞自动机模型敏感性识别方向,并且对模型内部元胞和邻域等因素进行了一些研究。国内比较有代表性的是,黎夏等人综合考虑了对模型输出精度有影响的多种因素,并且对其中一部分因素做了较为具体的实例分析。可以说,对元胞自动机模型影响因素的研究已较为充分,但是也有一定的问题存在。目前的研究主要集中在对单一因素进行评价分析,有些也有涉及到对元胞、邻域结构等进行多种因素的综合分析,缺乏对多种因素的交互作用分析,而且研究中发现,结果分析的方法多为简单的因素组合方法,往往需要对几十上百种试验组合进行研究,试验的过程复杂,效率较低。



技术实现要素:

本发明是为了解决上述问题而进行的,目的在于提供一种探索元胞自动机模型的尺度敏感性的耦合方法,能够简单、高效的分析尺度敏感性,并准确的确定最优尺度组合。

本发明为了实现上述目的,采用了以下方案:

本发明提供一种探索元胞自动机模型的尺度敏感性的耦合方法,其特征在于,包括以下步骤:步骤1.利用遥感影像提取研究区域的土地利用信息,进而确定元胞自动机模型中影响模拟结果的尺度因素;步骤2.利用响应面法中的中心组合试验设计来探索尺度敏感性,根据中心组合试验方案进行土地利用变化模拟,并计算精度评价指标kappa系数,得到元胞自动机模型中的最优尺度组合范围;步骤3.对各尺度因素之间存在的相关性进行定性和定量分析;步骤4.利用最陡爬坡法,选取合适的步长,逐步逼近最佳点获得元胞自动机模型中的最优尺度组合。

优选地,本发明提供的探索元胞自动机模型的尺度敏感性的耦合方法中,步骤2包括如下子步骤:步骤2-1.确定中心组合试验的因素及水平分别为3因素和5水平,其中3因素:元胞大小x1和邻域大小x2为数值因素,邻域类型x3为类别因素;5水平:编码值分别为-1.41,-1,0,1和1.41,编码值0是中心组合试验的中心点,每个数值因素的编码值对应一个实际值,类别因素分别对应moore邻域类型和vonneumann邻域类型;步骤2-2.确定中心组合试验的中心点实验重复次数为5,用来估算误差;步骤2-3.根据中心组合试验的因素、水平及中心点重复次数在响应面分析软件中设计试验方案,并按照试验方案利用交互式gis和影像处理软件中的元胞自动机模型完成对研究区域的土地利用变化模拟;步骤2-4.将土地利用变化的模拟图和分类图导入交互式gis和影像处理软件的crosstab模块中,得到精度评价指标kappa系数,获取元胞自动机模型的最佳尺度组合范围。

优选地,本发明提供的探索元胞自动机模型的尺度敏感性的耦合方法中,步骤3包括如下子步骤:步骤3-1.在响应面分析软件中,将中心组合试验中所得到的kappa系数进行多元回归拟合,并建立多元回归方程;步骤3-2.对多元回归模型进行方差分析、等高线分析和响应曲面分析,探索单个因素和因素交互项的显著效应及因素间的交互方式,完成对各尺度因素之间存在的相关性的定性分析;步骤3-3.根据建立的多元回归方程中各系数绝对值,对有显著效应的单个因素和因素交互项进行大小排序,定量地分析其对元胞自动机模型模拟结果产生的影响大小。

优选地,本发明提供的探索元胞自动机模型的尺度敏感性的耦合方法中,步骤4包括如下子步骤:步骤4-1.以中心组合试验中获取的最优尺度组合范围为基础数据,对元胞大小和邻域大小分别选取合适的步长,根据步长逐步减低尺度,确定最陡爬坡法的试验方案;步骤4-2.按照最陡爬坡法试验方案,利用交互式gis和影像处理软件中的元胞自动机模型完成对研究区域的土地利用变化模拟;步骤4-3.将土地利用变化的模拟图和分类图导入交互式gis和影像处理软件的crosstab模块中,得到精度评价指标kappa系数,其中kappa系数最大值对应的尺度组合为试验最佳点即为元胞自动机模型中的最优尺度组合。

发明的作用与效果

1.本方法不仅分析了单个因素的尺度敏感性,还能够识别出元胞大小、邻域大小和邻域类型三者之间二次交互项和三次交互项的显著效应以及交互方式,定性地讨论了元胞自动机模型对邻域结构、元胞大小和邻域大小三个尺度因素的敏感性。

2.本方法提供了一个高效的尺度敏感性定量评价方法,能够对例如元胞大小、邻域大小和邻域类型等单个因素及其二次交互项和三次交互项等,通过建立多元回归方程,给出上述因素及交互项与模拟精度之间关系,并根据回归方程中各系数绝对值大小,对上述因素的尺度敏感性进行定量分析。

附图说明

图1为本发明实施例中涉及的探索元胞自动机模型的尺度敏感性的耦合方法的流程图;

图2为本发明实施例中涉及的武汉市1987年的土地利用分类图;

图3为本发明实施例中涉及的武汉市1996年的土地利用分类图;

图4为本发明实施例中涉及的武汉市2005年的土地利用分类图;

图5为本发明实施例中涉及的等高线图,其中(a)为moore邻域类型,(b)为vonneumann邻域类型;

图6为本发明实施例中涉及的三维响应曲面图,其中(a)为moore邻域类型,(b)为vonneumann邻域类型。

具体实施方式

以下结合附图对本发明涉及的探索元胞自动机模型的尺度敏感性的耦合方法的具体实施方案进行详细地说明。

<实施例>

如图1所示,本实施例所提供的探索元胞自动机模型的尺度敏感性的耦合方法包括:

步骤1.利用遥感影像提取研究区域的土地利用信息,进而确定元胞自动机模型中影响模拟结果的尺度因素;

步骤2.利用响应面法中的中心组合试验设计来探索尺度敏感性,根据中心组合试验方案进行土地利用变化模拟,并计算精度评价指标kappa系数,得到元胞自动机模型中的最优尺度组合范围;步骤2具体包括如下子步骤:

步骤2-1.确定中心组合试验的因素及水平分别为3因素和5水平,其中3因素:元胞大小x1和邻域大小x2为数值因素,邻域类型x3为类别因素;5水平:编码值分别为-1.41,-1,0,1和1.41,编码值0是中心组合试验的中心点,每个数值因素的编码值对应一个实际值,类别因素分别对应moore邻域类型和vonneumann邻域类型;

步骤2-2.确定中心组合试验的中心点实验重复次数为5,用来估算误差;

步骤2-3.根据中心组合试验的因素、水平及中心点重复次数在design-expert软件中设计试验方案,并按照试验方案利用idrisiandes软件中的元胞自动机模型完成对研究区域的土地利用变化模拟;

步骤2-4.将土地利用变化的模拟图和分类图导入idrisiandes软件的crosstab模块中,得到精度评价指标kappa系数,获取元胞自动机模型的最佳尺度组合范围。

步骤3.对各尺度因素之间存在的相关性进行定性和定量分析;步骤3具体包括如下子步骤:

步骤3-1.在design-expert软件中,将中心组合试验中所得到的kappa系数进行多元回归拟合,并建立多元回归方程;

步骤3-2.对多元回归模型进行方差分析、等高线分析和响应曲面分析,探索单个因素和因素交互项的显著效应及因素间的交互方式,完成对各尺度因素之间存在的相关性的定性分析;

步骤3-3.根据建立的多元回归方程中各系数绝对值,对有显著效应的单个因素和因素交互项进行大小排序,定量地分析其对元胞自动机模型模拟结果产生的影响大小。

步骤4.利用最陡爬坡法,选取合适的步长,逐步逼近最佳点获得元胞自动机模型中的最优尺度组合。步骤4具体包括如下子步骤:

步骤4-1.以中心组合试验中获取的最优尺度组合范围为基础数据,参考各尺度因素之间存在的相关性分析,对元胞大小和邻域大小分别选取合适的步长,根据步长逐步减低尺度;邻域类型分别为moore和vonneumann邻域类型,由此编制最陡爬坡法的试验方案;

步骤4-2.按照最陡爬坡法试验方案,利用idrisiandes软件中的元胞自动机模型完成对研究区域的土地利用变化模拟;

步骤4-3.将土地利用变化的模拟图和分类图导入idrisiandes软件的crosstab模块中,得到精度评价指标kappa系数,其中kappa系数最大值对应的尺度组合为试验最佳点即为元胞自动机模型中的最优尺度组合。

以上是本方法的具体步骤,下面以1987、1996和2005年武汉市的数据作为例子,详细说明本方法的应用情况:

本实施例中,以1987、1996和2005年武汉市landsattm遥感影像数据为基础数据,经过遥感影像解译分类等数据预处理工作,提取土地利用基础数据。根据武汉市土地实际利用情况,将土地利用类型划分为5大类:水体、人造地表、林地、耕地和其他用地,获得3个不同时期的土地利用分类图,如图2至4所示。

本实施例中所使用的数据原始空间分辨率均为30m,考虑到试验方案中对元胞大小的要求不同,需要对分类数据进行重采样,得到满足试验方案要求的土地利用分类图。

将1987、1996和2005年的土地利用分类图分别导入idrisiandes软件中,由于idrisiandes仅支持栅格数据格式(rst格式),需要通过file→import→desktoppublishingformats→geotiff/tiff模块将原来的tiff格式转换为rst格式。

根据确定的中心组合试验的因素及水平,如下表1所示,在design-expert软件,通过responsesurface→centralcompositedesign,输入已确定中心组合试验的因素、水平和中心点实验重复次数,在design-expert自动生成中心组合试验方案,共26组试验,如下表2所示。

表1

表1中,*moore:moore邻域类型;*von:vonneumann邻域类型。

表2

根据上表2所列出的中心组合试验方案,完成26组土地利用变化模拟试验。在idrisiandes软件中,利用1987和1996年的土地利用分类图,通过modeling→environmental/simulationmodels→markov模块,获取马尔科夫转移矩阵。然后在ca_markov模块中,以1996的土地利用分类图为基础数据,导入所获取得马尔科夫转移矩阵,选取邻域大小和邻域类型,预测2005年的土地利用变化情况,获取2005年的土地利用变化模拟图。

在idrisiandes中,通过gisanalysis→databasequery→crosstab模块,输入2005年的土地利用分类图和模拟图,获取精度评价指标kappa系数,得到的结果参见上表2中的kappa系数值。由上表2可知,当元胞大小在30m~90m,邻域大小在3~7的范围内时,kappa系数的变化范围为70.07%~70.40%,此时kappa系数在邻域类型为moore和von的情况下都达到最大值,分别为70.26%和70.40%,因此,确定元胞自动机模型土地利用变化模拟的最佳尺度组合范围:元胞大小为30m~90m;邻域大小为3~7。

在design-expert中,将响应面法中的中心组合试验中所得到的kappa系数进行多元回归拟合,并建立多元回归方程:

对回归模型进行方差分析,结果见下表3,回归模型的p<0.0001,说明回归模型高度显著,该模型有较好的拟合度。方程的相关系数r2=0.9937,这说明了99.37%的试验数据可以用这个模型解释。在回归模型的一次项中,元胞大小x1、邻域大小x2、邻域类型x3均有p<0.0001,说明它们对元胞自动机模拟精度都具有极显著的影响。二次项中,元胞大小的二次项对模拟精度有极显著影响(p<0.0001),邻域大小的二次项影响显著(p<0.05)。交互项中,元胞大小*邻域大小x1x2、邻域大小*邻域类型x2x3均有p<0.05,说明他们之间的交互作用显著;元胞大小*邻域形状x1x3有p=0.0746,说明他们之间的交互作用不显著。在三次交互项中,由于x1x2x3、x2、x3、x1x3均有p>0.05,说明他们之间的交互作用不显著。由多元回归方程中的系数绝对值可知,这些因素对ca模拟精度影响大小的排序为:元胞大小x1>邻域大小x2>邻域形状x3>元胞大小的二次项>元胞大小*邻域大小x1x2>邻域大小*邻域类型x2x3>邻域大小的二次项

表3

根据响应面法中的中心组合试验结果,以元胞大小和邻域大小为自变量,kappa系数作为响应值,绘制等高线图和三维响应曲面图,如图5和6。其中,等高线的形状可以直接反映交互作用的显著大小,圆形表示两个因素之间交互作用不显著,椭圆形则表示两个因素之间交互作用显著;响应面的曲率越大,表明交互作用越显著,反之越弱。通过图5可以发现,在moore和von邻域类型下,元胞大小和邻域大小之间存在均交互作用。由图6可以看出,当元胞大小在30m~90m,邻域大小在3~11的范围内时,kappa系数较大;当元胞大小在90m~150m,邻域大小在3~11的范围内时,kappa系数较小。

以确定的元胞自动机模型最佳尺度组合范围为基础数据,参考各尺度因素之间存在的相关性分析,编制最陡爬坡法的试验方案,如下表4所示,其中元胞大小以30m为起点,选取15的步长;邻域大小以3为起点,选取2的步长;邻域类型分别为moore和vonneumann邻域类型。

表4

根据上表4所列出的试验方案,在idrisiandes软件中,完成5组土地利用变化模拟试验并计算精度评价指标kappa系数,得到的结果参见表4中的kappa系数值。由表4可知,当元胞大小为45m,邻域大小为5时,kappa系数在邻域类型为moore和von的情况下都达到最大值,分别为70.58%和70.62%,因此确定试验最佳点即元胞自动机的最优尺度组合:元胞大小为45m,邻域大小为5,邻域类型为vonneumann。

以上实施例仅仅是对本发明技术方案所做的举例说明。本发明所涉及的探索元胞自动机模型的尺度敏感性的耦合方法并不仅仅限定于在以上实施例中所描述的内容,而是以权利要求所限定的范围为准。本发明所属领域技术人员在该实施例的基础上做的任何修改或补充或等效替换,都在本发明的权利要求所要求保护的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1