用于生成图像的方法和装置与流程

文档序号:15888795发布日期:2018-11-09 19:56阅读:146来源:国知局
用于生成图像的方法和装置与流程

本申请实施例涉及计算机技术领域,具体涉及用于生成图像的方法和装置。

背景技术

在电子图像应用领域,人们经常期望得到高分辨率图像。高分辨率意味着图像中的像素密度高,能够提供更多的细节,而这些细节在许多实际应用中不可或缺。例如,高分辨率医疗图像对于医生做出正确的诊断是非常有帮助的;使用高分辨率卫星图像就很容易从相似物中区别相似的对象;如果能够提供高分辨的图像,计算机视觉中的模式识别的性能就会大大提高。

现有的生成高分辨率图像的方法,通常是直接学习由低分辨率图像到高分辨率图像的映射关系,基于该映射关系对原始图像进行处理,生成高分辨率图像。



技术实现要素:

本申请实施例提出了用于生成图像的方法和装置。

第一方面,本申请实施例提供了一种用于生成图像的方法,该方法包括:对目标图像进行插值;对于插值后的目标图像中的像素,提取以该像素为中心的第一像素矩阵,对第一像素矩阵进行主成分分析,得到目标矩阵;对于插值后的目标图像中的像素,基于该像素对应的目标矩阵,从预先生成的滤波器集合中选取滤波器,提取以该像素为中心的第二像素矩阵,利用选取的滤波器对第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值;将所得到的高分辨率像素值进行汇总,生成高分辨率图像。

在一些实施例中,滤波器集合通过如下步骤生成:提取高分辨率图像样本集合,对高分辨率图像样本集合中的高分辨率图像样本依次进行下采样和插值;对于插值后的高分辨率图像样本中的像素,提取以该像素为中心的第三像素矩阵,对第三像素矩阵进行主成分分析,得到目标矩阵样本;对所得到的目标矩阵样本进行分类;训练与每一类目标矩阵样本相对应的滤波器,将所训练的滤波器汇总为滤波器集合。

在一些实施例中,对所得到的目标矩阵样本进行分类,包括:将所得到的目标矩阵样本与预设矩阵进行点乘运算;将点乘运算结果相同的目标矩阵样本划分为一类。

在一些实施例中,训练与每一类目标矩阵样本相对应的滤波器,将所训练的滤波器汇总为滤波器集合,包括:对于每一类目标矩阵样本对应的、插值后的高分辨率图像样本中的像素,提取以该像素为中心的第四像素矩阵,将第四像素矩阵作为输入,将该像素对应的高分辨率像素作为输出,利用机器学习方法训练得到与该类目标矩阵样本对应的滤波器。

在一些实施例中,第一像素矩阵的行数、列数分别与第三像素矩阵的行数、列数相同,第二像素矩阵的行数、列数分别与第四像素矩阵的行数、列数相同。

在一些实施例中,该方法还包括:建立点乘运算结果与滤波器的对应关系。

在一些实施例中,对第一像素矩阵进行主成分分析,得到目标矩阵,包括:确定第一像素矩阵的协方差矩阵;确定协方差矩阵的特征值和特征向量;从所确定的特征值中选取目标特征值,将目标特征值对应的特征向量组成特征矩阵;将第一像素矩阵与特征矩阵相乘,得到目标矩阵。

在一些实施例中,对于插值后的目标图像中的像素,基于该像素对应的目标矩阵,从预先生成的滤波器集合中选取滤波器,包括:对于插值后的目标图像中的像素,将该像素对应的目标矩阵与预设矩阵进行点乘运算,从预先生成的滤波器集合中选取与点乘运算结果相对应的滤波器。

第二方面,本申请实施例提供了一种用于生成图像的装置,该装置包括:插值单元,被配置成对目标图像进行插值;分析单元,被配置成对于插值后的目标图像中的像素,提取以该像素为中心的第一像素矩阵,对第一像素矩阵进行主成分分析,得到目标矩阵;选取单元,被配置成对于插值后的目标图像中的像素,基于该像素对应的目标矩阵,从预先生成的滤波器集合中选取滤波器,提取以该像素为中心的第二像素矩阵,利用选取的滤波器对第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值;生成单元,被配置成将所得到的高分辨率像素值进行汇总,生成高分辨率图像。

在一些实施例中,滤波器集合通过如下步骤生成:提取高分辨率图像样本集合,对高分辨率图像样本集合中的高分辨率图像样本依次进行下采样和插值;对于插值后的高分辨率图像样本中的像素,提取以该像素为中心的第三像素矩阵,对第三像素矩阵进行主成分分析,得到目标矩阵样本;对所得到的目标矩阵样本进行分类;训练与每一类目标矩阵样本相对应的滤波器,将所训练的滤波器汇总为滤波器集合。

在一些实施例中,对所得到的目标矩阵样本进行分类,包括:将所得到的目标矩阵样本与预设矩阵进行点乘运算;将点乘运算结果相同的目标矩阵样本划分为一类。

在一些实施例中,训练与每一类目标矩阵样本相对应的滤波器,将所训练的滤波器汇总为滤波器集合,包括:对于每一类目标矩阵样本对应的、插值后的高分辨率图像样本中的像素,提取以该像素为中心的第四像素矩阵,将第四像素矩阵作为输入,将该像素对应的高分辨率像素作为输出,利用机器学习方法训练得到与该类目标矩阵样本对应的滤波器。

在一些实施例中,第一像素矩阵的行数、列数分别与第三像素矩阵的行数、列数相同,第二像素矩阵的行数、列数分别与第四像素矩阵的行数、列数相同。

在一些实施例中,该装置还包括:建立单元,被配置成建立点乘运算结果与滤波器的对应关系。

在一些实施例中,分析单元包括:第一确定模块,被配置成确定第一像素矩阵的协方差矩阵;第二确定模块,被配置成确定协方差矩阵的特征值和特征向量;组成模块,被配置成从所确定的特征值中选取目标特征值,将目标特征值对应的特征向量组成特征矩阵;相乘模块,被配置成将第一像素矩阵与特征矩阵相乘,得到目标矩阵。

在一些实施例中,选取单元进一步被配置成:对于插值后的目标图像中的像素,将该像素对应的目标矩阵与预设矩阵进行点乘运算,从预先生成的滤波器集合中选取与点乘运算结果相对应的滤波器。

第三方面,本申请实施例提供了一种电子设备,包括:一个或多个处理器;存储装置,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如用于生成图像的方法中任一实施例的方法。

第四方面,本申请实施例提供了一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现如用于生成图像的方法中任一实施例的方法。

本申请实施例提供的用于生成图像的方法和装置,通过对目标图像进行插值,而后利用主成分分析方式对插值后的目标图像中的每一像素的第一像素矩阵进行处理,得到该像素对应的目标矩阵,之后利用基于该目标矩阵所选取的滤波器对该像素的第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值,从而得到与插值后的目标图像中的各个像素对应的高分辨率像素值,最后汇总生成高分辨率图像。由此,在高分辨率图像生成的过程中,利用主成分分析方式进行像素矩阵的处理,可以更加准确地选取各像素对应的滤波器,从而提升了高分辨率图像生成的效果。

附图说明

通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:

图1是本申请的一个实施例可以应用于其中的示例性系统架构图;

图2是根据本申请的用于生成图像的方法的一个实施例的流程图;

图3是根据本申请的用于生成图像的方法的一个应用场景的示意图;

图4是根据本申请的用于生成图像的方法的又一个实施例的流程图;

图5图7是根据本申请的用于生成滤波器集合的方法的一个实施例的流程图;

图6是根据本申请的用于生成图像的装置的一个实施例的结构示意图;

图7是适于用来实现本申请实施例的电子设备的计算机系统的结构示意图。

具体实施方式

下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。

图1示出了可以应用本申请的用于生成图像的方法或用于生成图像的装置的示例性系统架构100。

如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。

用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息(例如图像处理请求)等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如图像处理类应用、视频播放类应用、资讯浏览类应用、社交平台软件等。

终端设备101、102、103可以是硬件,也可以是软件。当终端设备101、102、103为硬件时,可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。当终端设备101、102、103为软件时,可以安装在上述所列举的电子设备中。其可以实现成多个软件或软件模块(例如用来提供分布式服务),也可以实现成单个软件或软件模块。在此不做具体限定。

服务器105可以是提供各种服务的服务器,例如用于进行图像处理的图像处理服务器。图像处理服务器可以对接收到的目标图像等数据进行插值、分析等处理,并将处理结果(例如高分辨率图像)反馈给终端设备。

需要说明的是,服务器可以是硬件,也可以是软件。当服务器为硬件时,可以实现成多个服务器组成的分布式服务器集群,也可以实现成单个服务器。当服务器为软件时,可以实现成多个软件或软件模块(例如用来提供分布式服务),也可以实现成单个软件或软件模块。在此不做具体限定。

需要指出的是,本申请实施例所提供的用于生成图像的方法一般由服务器105执行,相应地,用于生成图像的装置一般设置于服务器105中。

需要指出的是,终端设备101、102、103也可以直接对其所存储的目标图像进行插值、分析等处理,此时,本申请实施例所提供的用于生成图像的方法也可以由终端设备101、102、103执行,此时的示例性系统架构100可以不包含上述网络104和服务器105。

应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。

继续参考图2,示出了根据本申请的用于生成图像的方法的一个实施例的流程200。该用于生成图像的方法,包括以下步骤:

步骤201,对目标图像进行插值。

在本实施例中,用于生成图像的方法的执行主体(例如图1所示的服务器105)可以首先提取目标图像,其中,上述目标图像可以是各种待进行超分辨率重建的图像。例如,上述目标图像可以是人脸图像、物品图像、景观图像等等。上述目标图像可以预先存储于本地,也可以是由其他电子设备(例如图1所示的终端设备101、102、103)通过有线连接或者无线连接方式发送的。其中,上述无线连接方式可以包括但不限于3g/4g连接、wifi连接、蓝牙连接、wimax连接、zigbee连接、uwb(ultrawideband)连接、以及其他现在已知或将来开发的无线连接方式。

在提取目标图像之后,上述执行主体可以利用各种现有的图像插值方式对上述目标图像进行插值,以将目标图像放大至目标尺寸(如放大至2倍、3倍、4倍)。此处,可以采用诸如最近邻插值、双线性插值、双平方插值、双立方插值或者其他高阶插值方法等进行上述目标图像的插值。实践中,图像插值是从低分辨率图像生成高分辨率图像的过程,可以用以恢复图像中所丢失的信息。需要说明的是,上述各种图像插值方式是目前广泛研究和应用的公知技术,在此不再赘述。

此处,在进行高分辨率图像生成的过程中,首先执行对目标图像的插值的处理,可以初步地提高目标图像的分辨率。在插值后的目标图像的基础上,再进行后续图像处理步骤,可以提升高分辨率图像生成的效果。

步骤202,对于插值后的目标图像中的像素,提取以该像素为中心的第一像素矩阵,对第一像素矩阵进行主成分分析,得到目标矩阵。

在本实施例中,对于插值后的目标图像中的像素,上述执行主体可以首先提取以该像素为中心的第一像素矩阵。其中,上述第一像素矩阵中可以包含以该像素为中心的正方形区域(例如3×3的图像块(patch))内的像素的像素值。

而后,上述执行主体可以对上述第一像素矩阵进行主成分分析(principalcomponentsanalysis,pca),得到目标矩阵。具体地,可以首先确定第一像素矩阵的协方差矩阵。之后,可以确定协方差矩阵的特征值和特征向量。最后,可以将第一像素矩阵投影至特征向量构成的空间中,将投影后所得到的矩阵确定为目标矩阵。

实践中,主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在统计学中,主成分分析是一种简化数据集的技术。它是一个线性变换,把数据变换到一个新的坐标系统中。主成分分析可以用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。由此,利用主成分分析的方式对第一像素矩阵进行处理,可以保留各个像素的第一像素矩阵中的重要的特征,从而使不同的第一像素矩阵的差异更为明显,因而可以实现更加准确地对插值后的目标图像内像素的分类。

在本实施例的一些可选的实现方式中,对于插值后的目标图像中的每一个像素,以该像素为中心的第一像素矩阵可以是以该像素为中心的正方形区域(例如3×3的图像块(patch))相对应的矩阵。第一像素矩阵中的数值可以与上述正方形区域中的像素一一对应,即第一像素矩阵的第i行第j列的数值为上述正方形区域中第i行第j列像素的像素值。其中,上述i为不小于1且不大于第一像素矩阵的行数的整数,上述j为不小于1且不大于第一像素矩阵的列数的整数。需要说明的是,对于某一些像素(例如位于图像边缘的像素),该像素的第一像素矩阵中的某些位置不存在与之对应的像素值(例如,位于图像上边缘的像素,以该像素为中心的第一像素矩阵的第一行没有与之相对应的像素值),此时,可以将这些位置的数值设置为预设值(例如0)。

在本实施例的一些可选的实现方式中,对于插值后的目标图像中的每一个像素,以该像素为中心的第一像素矩阵可以通过如下方式得到:第一步,提取以该像素为中心的正方形区域中的像素的像素值,生成矩阵中的数值与该正方形区域中的像素一一对应的像素矩阵。需要说明的是,对于某一些像素(例如位于图像边缘的像素),该像素的像素矩阵中的某些位置不存在与之对应的像素值(例如,位于图像上边缘的像素,该像素的像素矩阵的第一行没有与之相对应的像素值),此时,可以将这些位置的数值设置为预设值(例如0)。第二步,将该像素矩阵转换为行向量。由于行向量是矩阵的一种特殊的形式,因此,可以将该向量确定为以该像素为中心的第一像素矩阵。作为示例,对于插值后的目标图像中的某一个像素,可以提取以该像素为中心的3×3的patch的像素,生成3×3(3行3列)的像素矩阵。而后,可以将该3×3的像素矩阵转换成行向量,将该行向量确定为1×9(1行9列)的第一像素矩阵。

步骤203,对于插值后的目标图像中的像素,基于该像素对应的目标矩阵,从预先生成的滤波器集合中选取滤波器,提取以该像素为中心的第二像素矩阵,利用选取的滤波器对第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值。

在本实施例中,对于插值后的目标图像中的像素,上述执行主体可以基于该像素对应的目标矩阵,从预先生成的滤波器集合中选取滤波器。此处,上述执行主体中可以预先存储有滤波器集合。上述滤波器集合中的每一个滤波器可以与像素的一个类别相对应。上述执行主体可以通过对各个像素的目标矩阵进行分析或计算,根据分析结果或者计算结果,确定各个像素的类别,进而针对每一个像素进行相应的滤波器的选取。作为示例,上述执行主体可以将上述目标矩阵代入预设的公式或者函数进行计算,得到计算结果(例如一个数值)。不同的计算结果可以对应有不同的滤波器,上述执行主体可以基于所得到的计算结果选取对应的滤波器。需要说明的是,滤波器集合中的每一个滤波器可以是一个参数矩阵或者参数向量。利用滤波器对某一个像素的目标矩阵进行卷积计算,可以得到该像素的高分辨率像素值。

对于每一个像素,在选取滤波器之后,上述执行主体可以提取以该像素为中心的第二像素矩阵。其中,上述第二像素矩阵中可以包含以该像素为中心的正方形区域(例如7×7的图像块(patch))内的像素的像素值。作为示例,第二像素矩阵可以是7×7的矩阵,也可以是1×49的行向量。之后,可以利用选取的滤波器对上述第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值。需要说明的是,对于某一个像素,该像素的第二像素矩阵的尺寸可以与第一像素矩阵的尺寸相同或不同,此处不作限定。

由此,在主成分分析的基础上确定像素的类别,选取与该类别对应的滤波器,进行高分辨率像素值的计算,从而可以实现对插值后的目标图像内各像素更加精确的分类。

在本实施例的一些可选的实现方式中,对于插值后的目标图像中的每一个像素,上述执行主体可以将该像素对应的目标矩阵与预设矩阵进行点乘运算,将点乘运算结果作为该像素的类别。而后,可以从预先生成的滤波器集合中选取与点乘运算结果相对应的滤波器。此处需要说明的是,可以预先基于大量图像样本的分析处理而预先确定像素的类别总数和每一个类别的点乘运算结果,并预先生成与每一个类别相对应的滤波器。上述执行主体可以存储和提取各个滤波器与点乘运算结果的对应关系。

步骤204,将所得到的高分辨率像素值进行汇总,生成高分辨率图像。

在本实施例中,由于插值后的目标图像中的每一个像素均可以计算得到一个对应的高分辨率像素值,因此,上述执行主体可以将所得到的各个像素对应的高分辨率像素值进行汇总,生成高分辨率图像。

继续参见图3,图3是根据本实施例的用于生成图像的方法的应用场景的一个示意图。在图3的应用场景中,用户首先使用终端设备向图像处理服务器发送了一个图像处理请求,该图像处理请求中包含待进行超分辨率图像重建的目标图像301。图像处理服务器接收到该目标图像301后,首先对该目标图像301进行插值。而后,对插值后的图像中的每一个像素,提取以该像素为中心的第一像素矩阵,对该第一像素矩阵进行主成分分分析,得到目标矩阵。之后,选取该目标矩阵对应的滤波器,利用该滤波器对该第一像素矩阵进行卷积,得到该像素的高分辨率像素值。最后,图像处理服务器将所得到的高分辨率像素值进行汇总,生成高分辨率图像302。

本申请的上述实施例提供的方法,通过对目标图像进行插值,而后利用主成分分析方式对插值后的目标图像中的每一像素的第一像素矩阵进行处理,得到该像素对应的目标矩阵,之后利用基于该目标矩阵所选取的滤波器对该像素的第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值,从而得到与插值后的目标图像中的各个像素对应的高分辨率像素值,最后汇总生成高分辨率图像。由此,在进行高分辨率图像生成的过程中,首先执行对目标图像的插值的处理,可以初步地提高目标图像的分辨率。在插值后的目标图像的基础上,再进行后续图像处理步骤,可以提升高分辨率图像生成的效果。此外,在高分辨率图像生成的过程中,利用主成分分析方式对每一像素的的第一像素矩阵进行处理,可以保留各个像素的第一像素矩阵中的重要的特征,从而使不同的第一像素矩阵的差异更为明显,因而利用该方式所确定目标矩阵可以更加准确地选取各像素对应的滤波器,从而进一步提升了高分辨率图像生成的效果。

进一步参考图4,其示出了用于生成图像的方法的又一个实施例的流程400。该用于生成图像的方法的流程400,包括以下步骤:

步骤401,对目标图像进行插值。

在本实施例中,用于生成图像的方法的执行主体(例如图1所示的服务器105)可以首先提取目标图像,其中,上述目标图像可以是各种待进行超分辨率重建的图像。在提取目标图像之后,上述执行主体可以利用各种现有的图像插值方式对上述目标图像进行插值,以将目标图像放大至目标尺寸(如放大至2倍、3倍、4倍)。此处,可以采用诸如最近邻插值、双线性插值、双平方插值、双立方插值或者其他高阶插值方法等进行上述目标图像的插值。此处,在进行高分辨率图像生成的过程中,首先执行对目标图像的插值的处理,可以初步地提高目标图像的分辨率。在插值后的目标图像的基础上,再进行后续图像处理步骤,可以提升高分辨率图像生成的效果。

步骤402,对于插值后的目标图像中的像素,提取以该像素为中心的第一像素矩阵。

在本实施例中,对于插值后的目标图像中的每一个像素,上述执行主体可以按照如下步骤得到以该像素为中心的第一像素矩阵:

第一步,提取以该像素为中心的正方形区域中的像素的像素值,生成矩阵中的数值与该正方形区域中的像素一一对应的像素矩阵。需要说明的是,对于某一些像素(例如位于图像边缘的像素),该像素的像素矩阵中的某些位置不存在与之对应的像素值(例如,位于图像上边缘的像素,该像素的像素矩阵的第一行没有与之相对应的像素值),此时,可以将这些位置的数值设置为预设值(例如0)。

第二步,将该像素矩阵转换为行向量,将该行向量确定为第一像素矩阵。作为示例,对于插值后的目标图像中的某一个像素,可以提取以该像素为中心的3×3的patch的像素,生成3×3(3行3列)的像素矩阵。而后,可以将该3×3的像素矩阵转换成行向量,将该行向量确定为1×9(1行9列)的第一像素矩阵。

步骤403,确定第一像素矩阵的协方差矩阵。

在本实施例中,对于插值后的目标图像中的每一个像素,上述执行主体可以确定该像素的第一像素矩阵的协方差矩阵。根据协方差矩阵的计算方法,若第一像素矩阵为1×9(1行9列)的矩阵,则该矩阵的协方差矩阵为9×9的矩阵。

步骤404,确定协方差矩阵的特征值和特征向量。

在本实施例中,对于插值后的目标图像中的每一个像素,上述执行主体可以确定该像素对应的协方差矩阵的特征值和特征向量。其中,每一个特征值可以对应一个特征向量。

此处,协方差矩阵的计算方法、矩阵的特征值的计算方法、矩阵的特征向量的计算方法是目前数学领域广泛研究和应用的公知技术,在此不再赘述。

步骤405,从所确定的特征值中选取目标特征值,将目标特征值对应的特征向量组成特征矩阵。

在本实施例中,对于插值后的目标图像中的每一个像素,上述执行主体可以利用各种选取方式从所确定的特征值中选取目标特征值,将目标特征值对应的特征向量组成特征矩阵。此处,上述执行主体可以按照特征值从大到小的顺序,从特征值对应的特征向量中,依次选取预设数量的特征向量作为目标特征向量,并依次将目标特征向量进行组合,将所得到的矩阵的转置确定为特征矩阵。

作为示例,协方差矩阵为9×9的矩阵。上述执行主体确定出该矩阵存在9个特征值和9个对应的特征向量后,可以按照特征值从大到小的顺序对特征向量进行排序。而后,可以选取前8个特征向量进行组合,得到8×9(8行9列)的矩阵。之后,可以对该矩阵的转置确定为特征矩阵,该特征矩阵为9×8(9行8列)的矩阵。

步骤406,将第一像素矩阵与特征矩阵相乘,得到目标矩阵。

在本实施例中,对于插值后的目标图像中的每一个像素,上述执行主体可以将该像素的第一像素矩阵与该像素对应的特征矩阵相乘,得到该像素对应的目标矩阵。作为示例,第一像素矩阵为1×9(1行9列)的矩阵,特征矩阵为9×8(9行8列)的矩阵,两矩阵相乘后,得到1×8(1行8列)的目标矩阵。

由此,利用主成分分析的方式对第一像素矩阵进行处理,对第一像素矩阵进行降维,可以保留各个像素的第一像素矩阵中的重要的特征,从而使不同的第一像素矩阵的差异更为明显,因而可以实现更加准确地对插值后的目标图像内像素的分类。

步骤407,对于插值后的目标图像中的像素,将该像素对应的目标矩阵与预设矩阵进行点乘运算,从预先生成的滤波器集合中选取与点乘运算结果相对应的滤波器。

在本实施例中,对于插值后的目标图像中的每一个像素,将该像素对应的目标矩阵与预设矩阵进行点乘运算,从预先生成的滤波器集合中选取与点乘运算结果相对应的滤波器。

在本实施例中,对于步骤407中所述的滤波器集合,其生成步骤可以参照图5。图5给出了根据本申请的用于生成滤波器集合的方法的一个实施例的流程图。该用于生成滤波器集合的方法500,包括以下步骤:

步骤501,提取高分辨率图像样本集合,对高分辨率图像样本集合中的高分辨率图像样本依次进行下采样和插值。

此处,对于上述高分辨率图像样本集合中的每一个高分辨率样本,均可以先对其进行下采样,之后对下采样后的高分辨率样本插值。

此处,下采样的倍数可以预先设定。例如,对高分辨率图像样本进行2倍下采样,可以是把高分辨率图像样本中2×2的图像块内的图像转换为一个像素,该像素的像素值等于2×2的图像块中的所有像素的像素值的均值。此处,可以采用与步骤401中相同的插值方式进行插值,此处不再赘述。

步骤502,对于插值后的高分辨率图像样本中的像素,提取以该像素为中心的第三像素矩阵,对第三像素矩阵进行主成分分析,得到目标矩阵样本。

此处,对于插值后的高分辨率图像样本中的每一个像素,可以提取以该像素为中心的第三像素矩阵,对上述第三像素矩阵进行主成分分析,得到目标矩阵样本。需要说明的是,对插值后的高分辨率图像样本中的像素进行第三像素矩阵提取步骤与步骤402所述的对插值后的目标图像进行第一像素矩阵的提取步骤基本相同;对第三像素矩阵进行主成分分析得到目标矩阵样本的步骤与步骤403-步骤406的操作基本相同,此处不再赘述。

在一些可选的实现方式中,第一像素矩阵的行数、列数可以分别与第三像素矩阵的行数、列数相同。作为示例,第一像素矩阵、第三像素矩阵均可以为1×9的矩阵。

步骤503,对所得到的目标矩阵样本进行分类。

此处,可以将所得到的各个目标矩阵样本代入到预设的公式或者函数进行计算,得到计算结果(例如数值),将相同计算结果对应的目标矩阵样本划分为同一类。每一个类别可以用一个计算结果来表征。

在一些可选的实现方式中,可以首先将所得到的各个目标矩阵样本与预设矩阵进行点乘运算。之后,将点乘运算结果相同的目标矩阵样本划分为一类。

步骤504,训练与每一类目标矩阵样本相对应的滤波器,将所训练的滤波器汇总为滤波器集合。

此处,对于每一类目标矩阵样本,可以利用机器学习方法进行该类对应的滤波器的训练。此处的每一个滤波器可以是一个参数向量。

在一些可选的实现方式中,对于每一类目标矩阵样本对应的、插值后的高分辨率图像样本中的像素,可以首先提取以该像素为中心的第四像素矩阵,将上述第四像素矩阵作为输入,将该像素对应的高分辨率像素作为输出,利用机器学习方法训练得到与该类目标矩阵样本对应的滤波器。此处,第四像素矩阵的提取步骤与步骤203中提取第二像素矩阵的步骤基本相同,此处不再赘述。

在一些可选的实现方式中,还可以建立点乘运算结果与滤波器的对应关系。作为示例,可以以点乘运算结果为键值对的键,以用于表征滤波器的参数向量或者参数矩阵为键值对的值,利用键值对形式表征点乘运算结果与滤波器的对应关系。

由此,通过主成分分析技术对像素进行降维,进而进行分类,可以保留各个像素的重要的特征,从而使不同的像素的差异更为明显,因而可以使像素分类更加准确。在此基础上进行滤波器训练,可以提高滤波器的针对性和准确性。

回到用于生成图像的方法的流程400,在步骤407选取滤波器后,继续参见如下步骤:

步骤408,提取以该像素为中心的第二像素矩阵,利用选取的滤波器对第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值。

在本实施例中,对于插值后的目标图像中的每一个像素,上述执行主体可以提取以该像素为中心的第二像素矩阵。之后,利用选取的滤波器对该像素对应的第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值。

在一些可选的实现方式中,第二像素矩阵的行数、列数可以分别与第四像素矩阵的行数、列数相同。作为示例,第二像素矩阵、第四像素矩阵均可以为1×49的矩阵。

步骤409,将所得到的高分辨率像素值进行汇总,生成高分辨率图像。

在本实施例中,由于插值后的目标图像中的每一个像素均可以计算得到一个对应的高分辨率像素值,因此,上述执行主体可以将所得到的各个像素对应的高分辨率像素值进行汇总,生成高分辨率图像。

从图4中可以看出,与图2对应的实施例相比,本实施例中的用于生成图像的方法的流程400突出了滤波器集合的生成步骤。由此,本实施例描述的方案,通过主成分分析技术对像素进行降维分类,可以保留各个像素的重要的特征,从而使不同的像素的差异更为明显,因而可以使像素分类更加准确。在此基础上进行滤波器训练,可以提高滤波器的针对性和准确性。利用所训练的滤波器进行高分辨率图像的生成,进一步提升了高分辨率图像生成的效果。

进一步参考图6,作为对上述各图所示方法的实现,本申请提供了一种用于生成图像的装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。

如图6所示,本实施例所述的用于生成图像的装置600包括:插值单元601,被配置成对目标图像进行插值;分析单元602,被配置成对于插值后的目标图像中的像素,提取以该像素为中心的第一像素矩阵,对上述第一像素矩阵进行主成分分析,得到目标矩阵;选取单元603,被配置成对于插值后的目标图像中的像素,基于该像素对应的目标矩阵,从预先生成的滤波器集合中选取滤波器,提取以该像素为中心的第二像素矩阵,利用选取的滤波器对上述第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值;生成单元604,被配置成将所得到的高分辨率像素值进行汇总,生成高分辨率图像。

在本实施例的一些可选的实现方式中,上述滤波器集合可以通过如下步骤生成:提取高分辨率图像样本集合,对上述高分辨率图像样本集合中的高分辨率图像样本依次进行下采样和插值;对于插值后的高分辨率图像样本中的像素,提取以该像素为中心的第三像素矩阵,对上述第三像素矩阵进行主成分分析,得到目标矩阵样本;对所得到的目标矩阵样本进行分类;训练与每一类目标矩阵样本相对应的滤波器,将所训练的滤波器汇总为滤波器集合。

在本实施例的一些可选的实现方式中,在上述滤波器集合的生成步骤中,上述对所得到的目标矩阵样本进行分类,可以包括:将所得到的目标矩阵样本与预设矩阵进行点乘运算;将点乘运算结果相同的目标矩阵样本划分为一类。

在本实施例的一些可选的实现方式中,上述滤波器集合的生成步骤中的训练与每一类目标矩阵样本相对应的滤波器,将所训练的滤波器汇总为滤波器集合,可以包括:对于每一类目标矩阵样本对应的、插值后的高分辨率图像样本中的像素,提取以该像素为中心的第四像素矩阵,将上述第四像素矩阵作为输入,将该像素对应的高分辨率像素作为输出,利用机器学习方法训练得到与该类目标矩阵样本对应的滤波器。

在本实施例的一些可选的实现方式中,第一像素矩阵的行数、列数可以分别与第三像素矩阵的行数、列数相同,第二像素矩阵的行数、列数可以分别与第四像素矩阵的行数、列数相同。

在本实施例的一些可选的实现方式中,该装置还可以包括建立单元(图中未示出)。其中,上述建立单元可以被配置成建立点乘运算结果与滤波器的对应关系。

在本实施例的一些可选的实现方式中,上述分析单元602可以包括第一确定模块、第二确定模块、组成模块和相乘模块(图中未示出)。其中,上述第一确定模块可以被配置成确定上述第一像素矩阵的协方差矩阵。上述第二确定模块可以被配置成确定上述协方差矩阵的特征值和特征向量。上述组成模块可以被配置成从所确定的特征值中选取目标特征值,将上述目标特征值对应的特征向量组成特征矩阵。上述相乘模块可以被配置成将上述第一像素矩阵与上述特征矩阵相乘,得到目标矩阵。

在本实施例的一些可选的实现方式中,上述选取单元603可以进一步被配置成:对于插值后的目标图像中的像素,将该像素对应的目标矩阵与预设矩阵进行点乘运算,从预先生成的滤波器集合中选取与点乘运算结果相对应的滤波器。

本申请的上述实施例提供的装置,通过插值单元601对目标图像进行插值,而后分析单元602利用主成分分析方式对插值后的目标图像中的每一像素的第一像素矩阵进行处理,得到该像素对应的目标矩阵,之后选取单元603利用基于该目标矩阵所选取的滤波器对该像素的第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值,从而得到与插值后的目标图像中的各个像素对应的高分辨率像素值,最后生成单元604汇总生成高分辨率图像。由此,在高分辨率图像的生成过程中,利用主成分分析方式确定每一像素的目标矩阵,可以保留各个像素的第一像素矩阵中的重要的特征,从而使不同的第一像素矩阵的差异更为明显,因而利用该方式所确定目标矩阵可以更加准确地选取各像素对应的滤波器,从而提升了高分辨率图像生成的效果。

下面参考图7,其示出了适于用来实现本申请实施例的电子设备的计算机系统700的结构示意图。图7示出的电子设备仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。

如图7所示,计算机系统700包括中央处理单元(cpu)701,其可以根据存储在只读存储器(rom)702中的程序或者从存储部分708加载到随机访问存储器(ram)703中的程序而执行各种适当的动作和处理。在ram703中,还存储有系统700操作所需的各种程序和数据。cpu701、rom702以及ram703通过总线704彼此相连。输入/输出(i/o)接口705也连接至总线704。

以下部件连接至i/o接口705:包括键盘、鼠标等的输入部分706;包括诸如阴极射线管(crt)、液晶显示器(lcd)等以及扬声器等的输出部分707;包括硬盘等的存储部分708;以及包括诸如lan卡、调制解调器等的网络接口卡的通信部分709。通信部分709经由诸如因特网的网络执行通信处理。驱动器710也根据需要连接至i/o接口705。可拆卸介质711,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器710上,以便于从其上读出的计算机程序根据需要被安装入存储部分708。

特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分709从网络上被下载和安装,和/或从可拆卸介质711被安装。在该计算机程序被中央处理单元(cpu)701执行时,执行本申请的方法中限定的上述功能。需要说明的是,本申请所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(ram)、只读存储器(rom)、可擦式可编程只读存储器(eprom或闪存)、光纤、便携式紧凑磁盘只读存储器(cd-rom)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、rf等等,或者上述的任意合适的组合。

附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

描述于本申请实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括插值单元、分析单元、选取单元和生成单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,插值单元还可以被描述为“对目标图像进行插值的单元”。

作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的装置中所包含的;也可以是单独存在,而未装配入该装置中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该装置执行时,使得该装置:对目标图像进行插值;对于插值后的目标图像中的像素,提取以该像素为中心的第一像素矩阵,对该第一像素矩阵进行主成分分析,得到目标矩阵;对于插值后的目标图像中的像素,基于该像素对应的目标矩阵,从预先生成的滤波器集合中选取滤波器,提取以该像素为中心的第二像素矩阵,利用选取的滤波器对该第二像素矩阵进行卷积,得到与该像素对应的高分辨率像素值;将所得到的高分辨率像素值进行汇总,生成高分辨率图像。

以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1