一种振荡器的受力与运动分析方法与流程

文档序号:16000226发布日期:2018-11-20 19:21阅读:393来源:国知局

本发明属于钻井技术领域,涉及一种振荡器的受力与运动分析方法。



背景技术:

在钻井完井过程中,灌注水泥固实套管的质量将直接影响着完井后套管的工作质量。若固井水泥分布不均匀不密实,就会造成套管受力不均匀而易于发生破损。因此,灌注水泥如何达到均匀密实的效果,一直是完井工作者关心的问题。为此,人们设计了不同的振荡器下入套管中,以图通过振荡器的摆动冲击套管激起套管振动进而促使套管外水泥波动,达到固井水泥分布均匀密实效果。但对此缺乏理论分析验证支撑,资料少见。本文试图通过对振荡器在直井套管中的运动和对套管的作用主要行为,进行模拟分析,探索分析振荡器对套管水泥固实效果的评估方案。

振荡器在套管内的泥浆中在偏心转子的周期惯性力激励下运动,为了简化问题而反映其主要运动影响,视振荡器的运动为绕悬挂点的定点运动,但其运动受到套管内壁的限制,并且何时何处受到运动约束,是未知的,构成边界非线性问题。振荡器除了受重力作用外,还受到泥浆运动阻尼力作用。



技术实现要素:

本发明的目的在于提供一种振荡器的受力与运动分析方法,本发明的有益效果是能够准确定义振荡器的受力与主要运动。

本发明所采用的技术方案是首先分析转子的重力做功与动能、振荡器定子的重力功与动能、振荡器的重力元功与动能、套管内泥浆中振荡器上力系(包括泥浆阻尼力)功,最后得到振荡器的运动微分方程及运动方程。

进一步,转子的重力做功与动能如下,设振荡器转子角速度为ω,将所有转子组成部分模拟为扇形截面偏心块,任一瞬时其对称面与x1的夹角为ωt,转子上一点距z1轴为r,与x1的极角为ψ,则该点相对运动方程:

x1=rcosψ,y1=rsinψ,z1=z1 (1)

经坐标变换可得转子上任一点绝对运动方程:

考虑直井中,振荡器较长外加更长的悬挂绳索,与套管之间的间隙相对小得多,即则s≈1,并略去高阶小量,转子上任一点绝对坐标、速度分别为

设转子密度为ρ,内外半径分别为r1与r2,长为lz,上端距悬挂点为lz1,两侧面所夹圆心角为α,任一瞬时其对称面与x1的夹角为ωt时,两侧面与x1的夹角分别为为ωt-0.5α与ωt+0.5α。围绕转子任一点取微块质量为dm=ρrdψddz1dr,则由扇形形心位置公式

由式(3)知转子的重心坐标

振荡器的转子的重力元功与动能分别为

转子由电机轴、电机转子、偏心块、偏心块轴等四部分组成,设振荡器顶端距O点为lzo,钢的密度ρ=7.85*103kg/m3,偏心块α=0.5π,其余部分α=2π,四部分其它参数分别为lz=0.495m,lz1=lzo+0.787,r1=0,r2=0.0085m;lz=0.35m,lz1=lzo+0.846m,r1=0.0085m,r2=0.0225m;lz=0.47m,lz1=lzo+1.455m,r1=0.0135m,r2=0.0358m;lz=0.725m,lz1=lzo+1.29m,r1=0,r2=0.0135m,由式(4)可确定各部分重力元功动能,并分别叠加获得整个转子部分重力元功与动能分别为

进一步,振荡器定子的重力功与动能,由于定子是由圆筒或圆柱组成,将所有定子组成部分模拟为圆筒,任一瞬时其上一点距z1为r,与x1的极角为ψ,则该点在动系Ox1y1z1下:

x1=rcosψ,y1=rsinψ,z1=z1

在静系Oxyz下其坐标与速度分别为

其重心在z1轴上,即rc=0,z1c=lz1+0.5lz,由此知振荡器定子的重力元功与动能

由式(7)计算各部分重力元功及动能,并分别叠加获得整个定子部分重力元功与动能分别为

进一步,振荡器的重力元功与动能:

略去相对小量或高阶小量,有

进一步,套管内泥浆中振荡器上力系功:考虑泥浆对振荡器的影响,振荡器在泥浆中运动,将受到泥浆的阻尼作用,将水泥浆阻尼对振荡器横向运动所起的作用视为粘性阻尼,设单位表面积泥浆粘性阻尼系数为c,取振荡器外直径为D,长为l,顶端距悬挂点为l1,表面某点速度为v,围绕该点微小表面积dS上受到的泥浆阻尼力

dFf=-cvdS

泥浆中振荡器的泥浆运动阻尼力功

考虑泥浆对振荡器的影响主要反映在振荡器在泥浆中运动时迎泥浆半圆柱表面上的阻尼力,由式(6)和dS=0.5Ddψdz1,并考虑

则s≈1,且略去高阶小量,其元功为

由式(11)分别计算其阻尼力元功并叠加它们获得振荡器泥浆阻尼力元功

套管内泥浆中振荡器的力系功

由式(9)、(12),泥浆中振荡器系统的各力总元功

进一步,振荡器的运动微分方程及运动方程;

将(10)、(13)代入拉氏方程

对于广义坐标θ分别有

这是一个二自由度非线性微分方程组,考虑研究直井中振荡器对套管的作用在各过井轴的铅锤面内的几率是相同的,即主要考察振荡器对套管某铅锤面内的作用带来的影响即可,故将参量θ固定,设为θ=0,即只考察θ=0铅锤平面内的作用,则上述方程第一式有

引入振荡器系统的阻尼比、固有频率、荷载系数

方程(14)改写为

方程(15)为是一个常系数二阶线性非齐次微分方程,表示振荡器主要为简谐激扰下的强迫振动,对应的齐次微分方程,设并考虑一般泥浆阻尼较小,即ξ<1,对应齐次微分方程特征根为共轭复根,即通解为复指数函数,根据复指数函数与三角函数的关系,通解解可写为

其中,Ф1与δ为由初始条件确定的积分常数。为振荡器的衰减固有频率,方程(15)的特解,取为

代入方程(15),解得待定常数Ф与α

于是方程(15)通解为

式中,第一项初始条件引起的自由振动为瞬态振动,第二项振荡器偏心转子引起的强迫振动部分,为等幅的简谐振动即稳态振动。

为了研究的方便,引入力幅静变形、频率比和振幅放大系数分别为

则系统的响应相位差、振幅放大系数和振幅为

Φ=βΦ0,

初始条件取为可解得Ф1与δ,从而方程(15)的解为

由于振荡器开动前,即从而方程(15)的解为

附图说明

图1是振荡器转子模拟为扇形截面坐标示意图;

图2是振荡器定子模拟为圆筒截面坐标示意图。

具体实施方式

下面结合具体实施方式对本发明进行详细说明。

1、转子的重力做功与动能

设振荡器转子角速度为ω,将所有转子组成部分模拟为图1所示扇形截面偏心块。任一瞬时其对称面与x1的夹角为ωt,转子上一点距z1为r,与x1的极角为ψ,则该点相对运动方程即动系Ox1y1z1下

x1=rcosψ,y1=rsinψ,z1=z1 (1)

经坐标变换可得转子上任一点绝对运动方程即任一瞬时静系Oxyz下坐标位置:

考虑直井中,振荡器较长外加更长的悬挂绳索,与套管之间的间隙相对小得多,即则s≈1,并略去高阶小量,转子上任一点绝对坐标、速度分别为

设转子密度为ρ,内外半径分别为r1与r2,长为lz,上端距悬挂点为lz1,两侧面所夹圆心角为α,任一瞬时其对称面与x1的夹角为ωt时,两侧面与x1的夹角分别为为ωt-0.5α与ωt+0.5α。围绕转子任一点取微块质量为dm=ρrdψddz1dr,则由扇形形心位置公式

由式(3)知转子的重心坐标

振荡器的重力元功与动能分别为

转子由电机轴、电机转子、偏心块、偏心块轴等四部分组成,设振荡器顶端距O点为lzo,钢的密度ρ=7.85*103kg/m3,偏心块α=0.5π,其余部分α=2π,四部分其它参数分别为lz=0.495m,lz1=lzo+0.787,r1=0,r2=0.0085m;lz=0.35m,lz1=lzo+0.846m,r1=0.0085m,r2=0.0225m;lz=0.47m,lz1=lzo+1.455m,r1=0.0135m,r2=0.0358m;lz=0.725m,lz1=lzo+1.29m,r1=0,r2=0.0135m,由式(4)可确定各部分重力元功动能,并分别叠加获得整个转子部分重力元功与动能分别为

2、振荡器定子的重力功与动能

由于定子是由圆筒或圆柱组成,将所有定子组成部分模拟为图2所示圆筒。任一瞬时其上一点距z1为r,与x1的极角为ψ,则该点相对运动方程即动系Ox1y1z1下

x1=rcosψ,y1=rsinψ,z1=z1

与转子同理,静系Oxyz下其坐标与速度分别为

其重心在z1轴上,即rc=0,z1c=lz1+0.5lz,由此知振荡器定子的重力元功与动能

定子由马龙头1(分两部分)、马龙头2(分三部分)、马龙头连接套、仪器上接头(分两部分)、电机轴承(两个)、电机定子、电机外筒、双公接头、连接轴套、偏心轴承(两个)、偏心轴外筒、端部接头(分两部分)、堵头(分三部分)等13个部件组成,按截面尺寸不同划分为23部分,其参数分别为:lz=0.245m,lz1=lzo,r1=0.019m,r2=0.02975m;lz=0.201m,lz1=lzo+0.245m,r1=0.035m,r2=0.0445m;lz=0.1m,lz1=lzo+0.354m,r1=0,r2=0.038m;lz=0.07m,lz1=lzo+0.445m,r1=0.0265m,r2=0.0445m;lz=0.065m,lz1=lzo+0.515m,r1=0.0265m,r2=0.036m;lz=0.08m,lz1=lzo+0.537m,r1=0.035,r2=0.0445m;lz=0.08m,lz1=lzo+0.617m,r1=0.0225,r2=0.035m;lz=0.15m,lz1=lzo+0.697m,r1=0.034,r2=0.05m;lz=0.02m,lz1=lzo+0.801m,r1=0.0085m,r2=0.041m;lz=0.02m,lz1=lzo+1.221m,r1=0.0085m,r2=0.041m;lz=0.35m,lz1=lzo+0.846m,r1=0.023m,r2=0.04m;lz=0.58m,lz1=lzo+0.711m,r1=0.04m,r2=0.05m;lz=0.13m,lz1=lzo+1.261m,r1=0.033m,r2=0.045m;lz=0.1m,lz1=lzo+0.711m,r1=0.009m,r2=0.0175m;lz=0.021m,lz1=lzo+1.405m,r1=0.0125m,r2=0.04m;lz=0.021m,lz1=lzo+1.955m,r1=0.0125m,r2=0.04m;lz=0.72m,lz1=lzo+1.341m,r1=0.038m,r2=0.05m;lz=0.05m,lz1=lzo+2.011m,r1=0.033,r2=0.043m;lz=0.089m,lz1=lzo+2.061m,r1=0.032,r2=0.05m;lz=0.029m,lz1=lzo+2.112m,r1=0.012,r2=0.032m;lz=0.0325m,lz1=lzo+2.0795m,r1=0.02,r2=0.03m;lz=0.0185m,lz1=lzo+2.061m,r1=0.02,r2=0.025m。

由式(7)计算各部分重力元功及动能,并分别叠加获得整个定子部分重力元功与动能分别为

3、振荡器的重力元功与动能

由式(5)、(8),综上可知振荡器系统的重力元功与动能

略去相对小量或高阶小量,有

4、套管内泥浆中振荡器上力系功

考虑泥浆对振荡器的影响

振荡器在泥浆中运动,将受到泥浆的阻尼作用,为使研究简便而又反映主要实际振动状况,泥浆对振荡器的运动主要起着耗能作用,将水泥浆阻尼对振荡器横向运动所起的作用视为粘性阻尼,设单位表面积泥浆粘性阻尼系数为c。取振荡器外直径为D,长为l,顶端距悬挂点为l1,表面某点速度为v,围绕该点微小表面积dS上受到的泥浆阻尼力

dFf=-cvdS

泥浆中振荡器的泥浆运动阻尼力功

考虑泥浆对振荡器的影响主要反映在振荡器在泥浆中运动时迎泥浆半圆柱表面上的阻尼力,由式(6)和dS=0.5Ddψdz1,并考虑

则s≈1,且略去高阶小量,其元功为

振荡器在泥浆中运动时表面上的阻尼力元功按尺寸不同分马龙头1上部、马龙头1下部与接套、外筒等三部分计算,其参数分别为:D=0.0595m,l1=lzo,l=0.245m;D=0.089m,l1=lzo+0.245m,l=0.385m;D=0.1m,l1=lzo+0.63m,l=1.511m。由式(11)分别计算其阻尼力元功并叠加它们获得振荡器泥浆阻尼力元功

套管内泥浆中振荡器的力系功

由式(9)、(12),泥浆中振荡器系统的各力总元功

5、振荡器的运动微分方程及运动方程

将(10)、(13)代入拉氏方程

对于广义坐标θ分别有

这是一个二自由度非线性微分方程组,考虑研究直井中振荡器对套管的作用在各过井轴的铅锤面内的几率是相同的,即主要考察振荡器对套管某铅锤面内的作用带来的影响即可,故将参量θ固定,设为θ=0,即只考察θ=0铅锤平面内的作用,则上述方程第一式有

引入振荡器系统的阻尼比、固有频率、荷载系数

方程(14)改写为

方程(15)为是一个常系数二阶线性非齐次微分方程,表示振荡器主要为简谐激扰下的强迫振动,对应的齐次微分方程,设并考虑一般泥浆阻尼较小,即ξ<1,对应齐次微分方程特征根为共轭复根,即通解为复指数函数,根据复指数函数与三角函数的关系,通解解可写为

其中,Ф1与δ为由初始条件确定的积分常数。为振荡器的衰减固有频率,方程(15)的特解,取为

代入方程(15),解得待定常数Ф与α

于是方程(15)通解为

式中,第一项初始条件引起的自由振动为瞬态振动,第二项振荡器偏心转子引起的强迫振动部分,为等幅的简谐振动即稳态振动。

为了研究的方便,引入力幅静变形、频率比和振幅放大系数分别为

则系统的响应相位差、振幅放大系数和振幅为

Φ=βΦ0,

初始条件取为可解得Ф1与δ,从而方程(15)的解为

由于振荡器开动前,即从而方程(15)的解为

可见,振荡器在泥浆中的运动是偏心转子激起的以扰频ω即转子的角速度为圆频率的稳态响应与偏心转子激起的衰减自由振动的合成运动。随时间的延伸自由振动会衰减掉,最后运动形式将主要是稳态响应即简谐振动,只是由于阻尼使运动滞后于激扰力一个相位差α。

本发明根据动力学和振动力学理论,针对振荡器在直井套管中的运动和对套管的作用行为,进行模拟分析,确定了分析振荡器对套管水泥固实效果的评估方案,建立了在偏心转子激励下振荡器在直井套管中的反映主要运动特征的运动微分方程并确定其运动规律,然后试算确定由于套管对振荡器的运动限制产生的非线性边界问题,并结合碰撞理论,评估振荡器对套管的作用规律,最后据此分析由振荡器引起的套管振动行为并评估振荡器对套管水泥固实效果。为探索评估振荡器对套管水泥固实效果奠定理论基础。

以上所述仅是对本发明的较佳实施方式而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1