一种表面势紧凑模型参数提取方法与流程

文档序号:16670581发布日期:2019-01-18 23:33阅读:503来源:国知局
一种表面势紧凑模型参数提取方法与流程

本发明属于功率器件技术领域,涉及一种表面势紧凑模型参数提取方法,具体涉及一种基于氮化镓高电子迁移率晶体管(ganhemt)的模型参数提取方法。



背景技术:

氮化镓高电子迁移率晶体管(ganhemt)具有高频、大功率、高效率等特性优势,不仅是近年来国内外半导体器件方面研究的热点,且在高效率微波功率放大器中具有广阔的应用前景。准确的大信号模型对于器件及电路的研究具有重要意义,非线性电流-电压(i-v)模型作为器件大信号模型的核心,其模型参数的提取是器件大信号模型建模的基础。目前常用的ganhemt器件模型主要可分为经验基模型与物理基模型两类。

经验基模型的建模方法主要是利用器件的等效电路结构,结合器件的测试数据,建立输入输出关系的数学模型。具有模型简单,建模效率高,收敛性好,建模过程易于标准化,便于用常用的电路仿真软件等优点。对于ganhemt器件的经验基大信号模型而言,模型具有较多的拟合参数,现有技术的参数提取工作量大、且单纯的数值优化很容易造成参数取值的不合理性,从而加大建模的复杂程度。同时也给模型的多偏置适用性及宽频带应用带来了很大的挑战。2014年,电子科技大学的汪昌思等人提出了一种包含环境温度效应的ganhemt大信号热电模型,该模型采用了两个热电子网络分别表征器件的自热效应和环境温度效应导致的电流下降现象,利用数值有限元热仿真分析法,可提取热电子网络中的热阻和热容参数。再通过引入等效栅压,结合脉冲i-v测试技术,可准确模拟器件的陷阱效应。2015年,电子科技大学闻彰等人提出了一种包含自热效应和陷阱效应的ganhemt经验基大信号模型参数提取方法,该方法采用了分块提取的思想,首先将所有参数分为与自热效应相关、与陷阱效应相关以及与自热效应和陷阱效应均无关三类参数。再通过拟合不同偏置状态下的脉冲i-v转移特性曲线,依次提取出模型与热效应和陷阱效应无关参数、热参数及陷阱参数。最后利用软件编程实现。该提取方法提取精度较高,提高了经验基模型建模效率。但由于物理基模型相比于经验基模型,物理参数增多,拟合参数明显减少,该参数提取方法不再适用。

物理基模型目前主要可分为三类:表面势模型(例如asm-hemt)、电荷控制模型(mvsg)、分区模型(qpzd)。相比于ganhemt经验基大信号模型,物理基大信号模型是将各种物理效应直接引入物理方程中,再由器件的物理参数推导而来,因此模型参数更少,且参数大多具有明确的物理意义,能够反映器件的物理本质。但由于物理机理过于复杂、参数多值性等问题,使得模型收敛性较差。2017年,电子科技大学的武庆智等人提出了一种包含自热效应和陷阱效应的ganhemt多谐波表面势大信号模型,通过将结温增量嵌入载流子迁移率来表征模型的自热效应,并利用ansys软件热仿真提取得到热阻值及迁移率中引入的的温度相关参数值。陷阱效应则通过等效栅压来表征,通过拟合不同偏置状态下的脉冲i-v曲线,可得到表征陷阱效应的陷阱参数。但该方法暂未实现流程化,与实现快速高效的ganhemt器件建模仍存在一定的差距。同年,印度理工学院坎普尔分校的sheikhaamirahsan等人提出了一种物理基多偏置ganhemt大信号模型参数提取方法,给出了模型参数的具体提取流程:首先通过拟合静态i-v转移特性曲线,提取得到夹断电压、亚阈值斜率、低场迁移率等物理参数,再通过拟合静态i-v曲线,提取得到接入电阻的二维电子气密度、饱和电子速率,最后通过模拟器件自热效应,可提取得到等效热阻值。该方法能够提取出模型中的物理参数,但该方法未考虑用于修正i-v模型的经验参量,引入该经验参量的目的是对静态i-v曲线的低栅压区及高栅压区进行修正,使模型更加准确。



技术实现要素:

本发明的目的是克服现有技术的不足,提供一种ganhemt表面势紧凑模型高效率参数提取方法,利用matlab软件编程实现,快速准确地得到表面势i-v模型中的所有参数值,提高ganhemt器件建模的效率。

本发明所提出的技术问题是这样解决的:

一种表面势紧凑模型参数提取方法,包括以下步骤:

在提取参数前,对模型参数进行分类,按照模型中各参数是否具有明确物理意义分为以下三类:

(1)具有明确物理意义的参数:

阈值电压voff、al组分含量xal,势垒层厚度di,极化面电荷密度σ、低场迁移率μ0、饱和电子速率vsat;

(2)具有一定物理含义的半经验半物理参数:

用于表征器件自热效应相关项的拟合参数pt;用于表征器件陷阱效应相关项的四个参数ksurf、vgspinchoff、ksubs、vdssub0,其中,ksurf、vgspinchoff为表面陷阱参数,ksubs、vdssub0为体陷阱参数;

(3)不具有任何物理意义的经验参量:用于修正器件静态电流ids表达式的拟合项ma:

其中,wa1,wb1,wc1,wa2,wb2,wc2,wd为模型中的经验参量。

步骤1.提取具有明确物理意义的物理参数:

将晶体管源极接地,选取静态偏置点:漏极-源极电压静态偏置点vdsq=0v,栅极-源极电压静态偏置点vgsq=-4v,进行脉冲测试,得到多个漏源电压vds下的转移特性曲线;拟合每个漏源电压vds下的脉冲i-v的转移特性曲线,得到自热效应和陷阱效应无关的模型参数:阈值电压voff、al组分含量xal、势垒层厚度di、极化面电荷密度σ;

拟合静态i-v的线性区和饱和区,分别得到模型参数:低场迁移率μ0、饱和电子速率vsat;

步骤2.提取具有一定物理含义的半经验半物理参数:

拟合静态i-v曲线,得到自热效应相关的模型参数pt;

选取不同的静态偏置点,将i-v模型中的栅极-源极电压vgs替换为表征陷阱效应的等效栅极电压vgseff,等效栅极电压vgseff为漏极-源极电压vds、栅极-源极电压vgs、漏极-源极电压静态偏置点vdsq、栅极-源极电压静态偏置点vgsq的函数,再拟合脉冲i-v曲线,即可得到陷阱效应相关的模型参数:ksurf,vgspinchoff,ksubs,vdssub0;

步骤3.提取不具有物理意义的经验参量:

通过拟合器件的输出曲线,得到经验参量wa1,wb1,wc1,wa2,wb2,wc2,wd。

本发明的有益效果是:

(1)本发明所述方法简化了参数提取过程,将所有参数先按照是否具有明确物理意义分类,再在不同工作状态下提取模型参数;

(2)本发明所述方法利用物理参数间的相互联系,相继确定物理参数,比起直接拟合器件输出特性提取方法,大大减少了物理参数组合多值性出现的概率;多值性的存在常常是导致模型不收敛性的原因之一,本发明所述方法一定程度上解决了模型的收敛性问题;

(3)本发明所述方法利用mtalab软件编程实现,操作简单,一键运行后即可获得所有模型参数,相比于现有技术的建模方法,大大节省了人力时间成本;

(4)本发明通过分步拟合器件在每个漏极电压vds下的i-v转移特性曲线的方法,来确定模型中的拟合参量,在实际拟合过程中,简化了参数提取步骤。

附图说明

图1为本发明所述i-v模型参数提取方法的流程图;

图2为本发明所述方法中提取物理参量的流程图;

图3为本发明所述方法中提取半物理半经验参数的流程图;

图4为所提取模型在不同偏置下的耗散功率;

图5为提取得到的模型热阻值;

图6为器件静态i-v的饱和转移特性曲线;

图7为提取模型热效应参数的拟合效果图;

图8为器件在(0,0)偏置点下的脉冲i-v仿真实测效果图;

图9为提取得到所有i-v模型参数后的静态i-v曲线拟合效果图。

具体实施方式

下面结合附图和实施例对本发明进行进一步的说明。

本实施例提供一种氮化镓高电子迁移率晶体管i-v模型参数提取方法,其流程图如图1所示,包括以下步骤:

步骤1.提取具有明确物理意义的物理参数,其流程图如图2所示:

步骤1-1.在常温条件下(25℃)对氮化镓高电子迁移率晶体管ganhemt器件进行脉冲i-v测试。ganhemt器件的源极接地,栅极-源极的静态偏置电压vgsq=-4v,漏极-源极的静态偏置电压vdsq=0v。漏极脉冲延迟为500ns.扫描栅极-源极电压范围为-4v至0v,间隔0.2v,共21个点,扫描漏极-源极电压范围为0v至35v,间隔1v,共36个点。i-v模型为:

其中,ids为包含自热效应与陷阱效应下的静态电流,ids0为不包含自热效应与陷阱效应下的静态电流,pt为自热效应拟合参数,vds为漏极-源极电压,rth为器件热阻,t为环境温度,t0=300k。

由于此时的器件处于夹断状态,可忽略其自热效应和陷阱效应的影响。i-v模型可简化为:

其中,ma为拟合项,c0和δ为系数,均为已知量,w为栅宽,l为栅长,vt为热电压,;μe0为有效电子迁移率,μeo=μ1/(1+m1ev+m2ev2),m1与m2为拟合参数,μ1为低场电子迁移率;ev为垂直有效电场,ev=ε(vgt-φsm)/dεgan,ε为algan层的介电常数,电压vgt=mtr*vgs-voff,mtr为跨导调制因子,vgs为栅极-源极电压,voff为阈值电压,d为dd与di之和,dd为无掺杂隔离层厚度,di为势垒层中的掺杂层厚度。εgan为gan层的介电常数;漏源极的平均表面势φsm=(φss+φsd)/2,φss为源极表面势,φsd为漏极表面势;λ为沟道调制系数,为表征器件截止特性的多项式,其中λb与bk为截止效应调制因子,vbr,为截止电压,vdg为漏极-栅极电压。

步骤1-2.由步骤1-1得到的脉冲i-v测试数据,得到在每个漏极-源极电压vds下,以漏极-源极电压vgs为横坐标,漏极电流ids为纵坐标的转移特性曲线。对于每条转移特性曲线,其电流迅速增大的点所对应的横坐标vgs的值,即为器件的阈值电压voff。对于器件的al组分含量xal而言,其变化范围很小(通常在0.2-0.3之间),波动也较小,因此为降低其余物理参数的提取难度,现给定值为0.23。

步骤1-3.根据下式求得极化面电荷密度σ:

σ=abs(2((a0-a)/a)·(e31-e33·c13/c33)+psp-psp0)/q(3)

其中,a0、psp0为常数,当xal为定值时,上式中的拟合系数a、c13、c33、e31、e33、psp也为定值。

将已知参数值带入下式,求得势垒层厚度di:

其中,为肖特基势垒高度,δec为algan/gan界面处的导带失配量,q为电荷量,nd为n型algan层的掺杂浓度,ε为algan层的介电常数,σ为极化面电荷密度。

步骤1-4.将σ和di带入式(2),利用最小二乘法拟合步骤1-2得到的i-v曲线,得到低场迁移率μ0和饱和电子速率vsat的值。

步骤2.提取具有一定物理含义的半经验半物理参数,其流程图如图3所示:

步骤2-1.对ganhemt器件进行静态i-v测试。将ganhemt器件的源极接地,栅极-源极的扫描电压范围为-4v至1v,间隔0.2v,共26个点,漏极-源极的扫描电压范围为0v至35v,间隔1v,共36个点。

步骤2-2.利用ansys软件中的3d有限元仿真提取器件的热阻rth,器件的热阻rth由下式表示

rth=rt0+rt1·pdiss+rt2·pdiss2+rt3·pdiss3(5)

其中,rt0=45.77,rt1=3.193,rt2=-0.05253,ra=0.07365分别是提取得到的热阻rth关于耗散功率pdiss的多项式系数。

t=δt+t0,δt=pdiss·rth=ids·vds·rth(6)

其中,δt为温度差,t0=300k。

由于温度差at中含有未完全提参的ids项,将at代入i-v模型(式(1))后,使得i-v模型成为嵌套递归形式,极大增加了提参难度。为避免出现嵌套递归形式的i-v模型,由步骤2-2中得到的静态i-v测试数据,计算出每个vds和vgs下的耗散功率pdiss(pdiss=ids·vds),如附图4所示,即可得到每个不同偏置点(vds,vgs)下的器件热阻,如附图5所示。

步骤2-3.由步骤2-1测得的静态i-v测试数据,得到在每个漏极-源极电压vds下以漏极-源极电压vgs为横坐标,漏极电流ids为纵坐标的转移特性曲线,如附图6所示。对于每条转移特性曲线,vds为已知的定值,整个i-v模型简化为以vgs为自变量的一元函数,pt为i-v模型(式(1))中的未知系数,通过给定不同的vgs的值,可得到相应的pt值,将pt代入式(1)可得到静态i-v的仿真曲线,将仿真值与实测数据进行对比,选择使两组曲线误差最小的pt值。通过求解式(1)可得模型热参数拟合效果如附图7所示。

步骤2-4.对ganhemt器件进行脉冲i-v测试。ganhemt器件的源极接地,选取两组静态偏置点:栅极-源极的静态偏置电压vgsq=0v,漏极-源极的静态偏置电压vdsq=0v;栅极-源极的静态偏置电压vgsq=-4v,漏极-源极的静态偏置电压vdsq=0v,漏极脉冲延迟为500ns。两组偏置点的脉冲i-v测试数据的差值,即为表面陷阱所引起的,由表面陷阱参数ksurf,vgspinchoff表示。同理,另选取两组不同的静态偏置点vgsq=-4v,vdsq=0v以及vgsq=-4v,vdsq=35v;两组偏置点的脉冲i-v测试数据的差值为体陷阱所致,用体陷阱参数ksubs,vdssub0表示。

步骤2-5.将上述所有步骤中所得到的i-v模型参数代入i-v模型(式(1)),并将下式

替换i-v模型中的栅极-源极电压vgs,采用最小二乘法拟合步骤2-4中测量得到的脉冲i-v曲线,即可得到陷阱效应项vgseff中陷阱参数ksurf,vgspinchoff、ksubs,vdssub0的值。静态偏置点(0,0)下的脉冲i-v仿真实测效果如附图8所示。

步骤3.提取不具有物理意义的经验参量:

步骤3-1.由静态电流ids的拟合项ma表达式为:

由上式可知,wa1,wb1,wc1与wa2,wb2,wc2两组参量在表达形式上完全一致,为减少拟合过程中由于参数过多带来的误差,可采用最小二乘法,先用拟合参量wa1,wb1,wc1对步骤2-1测试所得的静态i-v数据进行拟合,可得到不同偏置点下wa1,wb1,wc1的离散值,为简化后续拟合的复杂程度,将所得到的拟合参量不同偏置下的离散值取均值,再将该值代入下式(1),采用相同的方法对wa2,wb2,wc2进行拟合,可得到拟合参量wa2,wb2,wc2的值。

步骤3-2.将步骤3-1中得到的值代入式(1)中,采用最小二乘法对步骤2-1测试所得的静态i-v数据进行拟合,可得到wd在不同偏置点下的离散值。

完成以上所有步骤后即得到了i-v模型的所有参数值。附图9所示为提取得到所有i-v模型参数后的静态i-v曲线拟合效果图。

虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围情况下,可以对这些实施例进行各种变化、替换和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1