一种基于多智能体模拟的建筑碳排放预测方法和装置与流程

文档序号:33032962发布日期:2023-01-20 21:22阅读:70来源:国知局
一种基于多智能体模拟的建筑碳排放预测方法和装置与流程

1.本发明涉及碳排放计算与预测技术领域,特别是涉及一种基于多智能体模拟的建筑碳排放预测方法和装置。


背景技术:

2.目前,众多企业针对建筑楼宇节能这一领域开展节能减排工作,建设了大量能耗监测平台,但大多运行维护不到位,且缺乏碳排放管理功能,无法对楼宇碳排放进行预测和预警,未能合理充分引导建筑使用人员进一步节能降碳,不能充分挖掘建筑楼宇的减碳潜力。
3.现有的研究和方法主要针对地区级碳排放量预测,针对园区级、建筑级甚至更小单元级别的碳排放预测方法及研究极少,现有方法的预测建模颗粒度不够细化。此外,现有碳排放预测方法大都需要基于用户历史用能数据,难以对于历史负荷数据不足的新建建筑的碳排放预测提供有力支撑,且现有预测方法比较少考虑人员行为的影响。


技术实现要素:

4.本发明所要解决的技术问题是提供一种基于多智能体模拟的建筑碳排放预测方法和装置,能够对历史用能数据不足的建筑进行不同时空尺度的碳排放量预测。
5.本发明解决其技术问题所采用的技术方案是:提供一种基于多智能体模拟的建筑碳排放预测方法,包括以下步骤:构建多智能体模型,并对所述多智能体模型进行初始化,所述多智能体模型包括环境智能体、设备智能体以及人员智能体;建立所述设备智能体的碳排放计算模型;建立环境智能体的热/冷负荷计算模型;建立人员智能体的用能行为模型;建立建筑碳排放计算模型;利用所述多智能体模型、设备智能体的碳排放计算模型、环境智能体的热/冷负荷计算模型、人员智能体的用能行为模型和建筑碳排放计算模型进行建筑碳排放预测模拟,得到不同时间段建筑不同房间及建筑总体碳排放量。
6.所述环境智能体包括房间智能体以及室外环境智能体;所述环境智能体初始化包括房间智能体的平面布置、墙体内表面积、墙体内表面与空气表面的传热系数、墙体材料比热容、房间内空气密度、房间与外部环境的换气量、房间与相邻房间的换气量、窗户表面积及对应的遮阳系数的初始化;所述的室外环境智能体初始化包括室外环境温度、照度的环境参数的初始化。
7.所述设备智能体包括连续设备智能体、待机设备智能体、冷热设备智能体和主动设备智能体;所述设备智能体初始化包括设备智能体的数量、类型、初始状态、不同状态下对应的电功率以及位置的初始化。
8.所述人员智能体包括环保型人员智能体、节约型人员智能体、正常型人员智能体和浪费型人员智能体;所述人员智能体初始化包括人员数量、人员的节能意识类型以及人员所在位置的初始化。
9.所述对所述多智能体模型进行初始化时,还包括对全局参数进行初始化,所述全局参数进行初始化是指碳排因子的初始化。
10.所述建立所述设备智能体的碳排放计算模型,包括:建立连续设备智能体的碳排放量计算模型:;建立待机设备智能体的碳排放量计算模型:;建立主动设备智能体的碳排放量计算模型:;建立冷热设备智能体的碳排放量计算模型:;其中,p
con
(τ)为τ时刻连续设备的电功率,p
con-1
为连续设备的额定功率,c
con
(t)为t时段内连续设备的碳排放量,p
sta
(τ)为τ时刻待机设备的电功率,s表示待机设备的状态,s0、s1和s2分别代表关闭、开启和待机,p
sta-1
为待机设备的额定功率,p
sta-2
为待机设备处于待机状态时的功率,c
sta
(t)为t时段内待机设备的碳排放量,p
act
(τ)为τ时刻主动设备的电功率,s'表示主动设备的状态,s'0和s'1分别代表关闭和开启,c
act
(t)为t时段内主动设备的
碳排放量,p
cold
(τ)为τ时刻冷热设备在制冷时的电功率,p
heat
(τ)为τ时刻冷热设备在制热时的电功率,q
cool
(τ)为房间在τ时刻的冷负荷,q
heat
(τ)为房间在τ时刻的热负荷,cop
cool
为冷热设备的制冷系数,cop
heat
为冷热设备的制热系数,s''为冷热设备的状态,s''0和s''1分别代表关闭和开启,cc(t)为t时段内冷热设备在制冷时的碳排放量,ch(t)为t时段内冷热设备在制热时的碳排放量,c
grid
为碳排放因子。
11.所述建立环境智能体的热/冷负荷计算模型,包括:通过动态传热方程计算采暖季热负荷q
heat
(τ)和供冷季冷负荷q
cool
(τ),所述动态传热方程为:其中,cr为房间内的空气热容,t
room
为房间内需要维持的温度,pn(τ)为τ时刻房间内第n个用电设备的电功率,ξn为房间内第n个用电设备的散热系数,mm为房间内第m个人的质量,ζm为房间内第m个人的散热系数,s
win,k
为房间内第k扇窗户的面积,dk为房间内第k扇窗户的日辐射得热因子,z
win,k
为房间内第k扇窗户的遮阳系数,si为房间内第i面墙的内表面面积,h
in
为墙体内表面与空气表面的传热系数,tr(τ)为τ时刻房间内的温度,ti(τ)为τ时刻房间内第i面墙的表面温度,c
p
为墙体材料的比热容,ρ为空气密度,g
out
为房间与室外环境的换气量,t
out
(τ)为τ时刻室外环境的温度,g
adj
为房间与相邻房间的换气量,t
room+1
(τ)为τ时刻相邻房间的室内温度。
12.所述建立人员智能体的用能行为模型,包括:将人员智能体的用能行为分为事件触发型和环境触发型;建立事件触发型用能行为的概率模型:,其中,p
ev
为事件触发型用能行为的概率,pe为pe或pn或ps或pw,pe、pn、ps和pw分别表示环保型人员、节约型人员、正常型人员和浪费型人员关闭不使用电器的可能性;建立环境触发型用能行为的概率模型:,
,其中,p
en
为人员在房间内时主动设备的开关动作概率,x表示房间内环境参数,xa和xb为控制主动设备的开关行为发生的阈值;p
hot
为房间内人员感到闷热时打开冷热设备的概率,p
cold
为房间内人员感到寒冷时打开冷热设备的概率,l和k'为拟合参数;c1和c2为控制冷热设备开启概率减弱程度的系数,t为房间内温度参数,u为控制舒适度的阈值。
13.所述建立的建筑碳排放计算模型为:,其中,c
room,j
(t)为房间j在t时间段内的碳排放量;c
con,j,x
(t)为t时间段内房间j中连续设备x的碳排放量;c
sta,j,y
(t)为t时间段内房间j中待机设备y的碳排放量;c
act,j,z
(t)为t时间段内房间j中主动设备z的碳排放量;c
h,j,v
(t)为t时间段内房间j中冷热设备v制热时的碳排放量,c
c,j,v
(t)为t时间段内房间j中冷热设备v制冷时的碳排放量;c
office
(t)为建筑在t时间段内的总碳排放量。
14.所述利用所述多智能体模型、设备智能体的碳排放计算模型、环境智能体的热/冷负荷计算模型、人员智能体的用能行为模型和建筑碳排放计算模型进行建筑碳排放预测模拟,得到不同时间段建筑不同房间及建筑总体碳排放量具体为:读取当前时间步的环境参数及各人员的行为信息,并更新人员移动后的位置信息;基于所述人员智能体的用能行为模型计算人员行为触发用能设备状态变化的概率,并判断当前用能设备启停状态,基于所述建筑碳排放计算模型计算更新当前时段各房间及建筑内的碳排放量;判断人员行为是否使环境参数发生改变,若不发生改变则直接进入下一步,若发生改变则更新环境参数后进入下一步;判断模拟时间步长是否达到设定值,是则完成模拟,否则返回所述读取当前时间步的环境参数及各人员的行为信息,并更新人员移动后的位置信息的步骤进行下一个时间步的模拟。
15.本发明解决其技术问题所采用的技术方案是:提供一种基于多智能体模拟的建筑碳排放预测装置,包括:构建模块,用于构建多智能体模型,并对所述多智能体模型进行初始化,所述多智能体模型包括环境智能体、设备智能体以及人员智能体;
第一建立模块,用于建立所述设备智能体的碳排放计算模型;第二建立模块,用于建立环境智能体的热/冷负荷计算模型;第三建立模块,用于建立人员智能体的用能行为模型;第四建立模块,用于建立建筑碳排放计算模型;预测模拟模块,用于利用所述多智能体模型、设备智能体的碳排放计算模型、环境智能体的热/冷负荷计算模型、人员智能体的用能行为模型和建筑碳排放计算模型进行建筑碳排放预测模拟,得到不同时间段建筑不同房间及建筑总体碳排放量。
16.本发明解决其技术问题所采用的技术方案是:提供一种电子设备,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述基于多智能体模拟的建筑碳排放预测方法的步骤。
17.本发明解决其技术问题所采用的技术方案是:提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述基于多智能体模拟的建筑碳排放预测方法的步骤。
18.有益效果由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:本发明构建了包含人员、设备、环境三类智能体的多智能体碳排放预测模型,充分考虑人员行为、环境影响以及用能设备耗能情况,实现不同时间尺度(小时、日、周、月等)、不同空间尺度(房间、楼层、楼宇)的精细化碳排放预测,引导用户进一步节能降碳,促进建筑楼宇实现节能降碳精细化管控,充分挖掘建筑的减碳潜力。
附图说明
19.图1是本发明第一实施方式的流程图;图2是本发明第一实施方式中模拟预测的流程图;图3是本发明第二实施方式中基于多智能体模拟的建筑碳排放预测装置的结构示意图。
具体实施方式
20.下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本技术所附权利要求书所限定的范围。
21.本发明的第一实施方式涉及一种基于多智能体模拟的建筑碳排放预测方法,该方法针对历史用能数据不足且考虑用户行为,构建了包含人员、设备、环境三类智能体的多智能体碳排放预测模型,充分考虑人员行为、环境影响以及用能设备耗能情况,实现不同时间尺度(小时、日、周、月等)、不同空间尺度(房间、楼层、楼宇)的精细化碳排放预测。如图1所示,具体包括以下步骤:(一)多智能体模型初始化所述的多智能体模型初始化主要是指多智能体建筑碳排放预测模型的不同类型智能体的划分及初始参数设定。多智能体模型中共包含三类智能体,分别为环境智能体、设
备智能体以及人员智能体。
22.1)环境智能体初始化环境智能体包括房间智能体以及室外环境智能体。
23.所述环境智能体初始化包括房间智能体的平面布置(房间面积、位置、门窗布置情况)、墙体内表面积、墙体内表面与空气表面的传热系数、墙体材料比热容、房间内空气密度、房间与外部环境的换气量、房间与相邻房间的换气量、窗户表面积及对应的遮阳系数。
24.所述的室外环境智能体初始化主要包括室外环境温度、照度等环境参数的初始化。
25.2)设备智能体初始化根据使用方式的不同,用电设备可分为连续设备(一直处于开启状态且功率恒定的设备,如服务器、台式电话、路由器、报警器等)、待机设备(如台式计算机、电视机等可受用户控制,存在开启、待机、关闭三种状态的用电设备,当设备处于关闭状态时,设备的功率为零;当设备处于待机状态时,设备的功率相对较低;而当设备处于开启状态时,设备的功率相对较高且等于其额定功率)、冷热设备(此类设备开启后功耗将在恒温控制下处于零和设定功率水平之间波动,设备功耗受环境温度影响,如冰箱、空调等)、主动设备(如电灯、电热水壶等,可受用户控制,存在开启与关闭两种状态,开启时功率恒定且等于额定功率,关闭时功率为零)四类。
26.因此,设备智能体包含连续设备智能体、待机设备智能体、冷热设备智能体和主动设备智能体。所述的设备智能体初始化包括设备智能体的数量、类型、初始状态、不同状态下对应的电功率以及其位置(所在房间)。
27.3)人员智能体初始化所述的人员智能体初始化主要指人员数量、人员的节能意识类型以及人员所在房间的初始化。根据人员的节能意识不同,将人员智能体划分为环保型、节约型、正常型、浪费型四类,每种类型在人群中所占比例分别为pre%、prs%、prn%、prw%(pre%+ prs%+ prn%+ prw%=100% 且 prn%》 prw%》 prs%》 pre%),各类人群关闭不使用电器的可能性分别为pe、pn、ps和pw(0《 pw《ps《 p
n 《 p
e 《1)。
28.4)全局参数初始化所述的全局参数初始化主要指碳排因子(建筑消耗单位电能所带来的碳排放量)的初始化。
29.(二)建立设备智能体的碳排放计算模型四类设备智能体的碳排放计算模型分别为:1)连续设备连续设备的碳排放量可由下式计算:式中,p
con
(τ)为τ时刻连续设备的电功率,p
con-1
为连续设备的额定功率,c
con
(t)为t时段内连续设备的碳排放量,c
grid
为碳排放因子。
30.2)待机设备待机设备的碳排放量可由下式计算:式中,p
sta
(τ)为τ时刻待机设备的电功率,s表示待机设备的状态,s0、s1和s2分别代表关闭、开启和待机,p
sta-1
为待机设备的额定功率,p
sta-2
为待机设备处于待机状态时的功率,c
sta
(t)为t时段内待机设备的碳排放量。
31.3)主动设备主动设备的碳排放量可由下式计算:式中,p
act
(τ)为τ时刻主动设备的电功率,s'表示主动设备的状态,s'0和s'1分别代表关闭和开启,c
act
(t)为t时段内主动设备的碳排放量。
32.4)冷热设备冷热设备在本实施方式中主要考虑空调,其碳排放量可由下式计算:式中,p
cold
(τ)为τ时刻冷热设备在制冷时的电功率,p
heat
(τ)为τ时刻冷热设备在制热时的电功率,q
cool
(τ)为房间在τ时刻的冷负荷,q
heat
(τ)为房间在τ时刻的热负荷,cop
cool
为冷热设备的制冷系数,cop
heat
为冷热设备的制热系数,s''为冷热设备的状态,s''0和s''1分别代表关闭和开启,cc(t)为t时段内冷热设备在制冷时的碳排放量,ch(t)为t时段内冷热
设备在制热时的碳排放量。
33.(三)建立房间智能体热/冷负荷计算模型对于由墙体维护结构组成的房间,可按照如下动态传热方程计算采暖季热负荷q
heat
(τ)和供冷季冷负荷q
cool
(τ):式中,cr为房间内的空气热容,t
room
为房间内需要维持的温度,pn(τ)为τ时刻房间内第n个用电设备的电功率,ξn为房间内第n个用电设备的散热系数,mm为房间内第m个人的质量,ζm为房间内第m个人的散热系数,s
win,k
为房间内第k扇窗户的面积,dk为房间内第k扇窗户的日辐射得热因子,z
win,k
为房间内第k扇窗户的遮阳系数,si为房间内第i面墙的内表面面积,h
in
为墙体内表面与空气表面的传热系数,tr(τ)为τ时刻房间内的温度,ti(τ)为τ时刻房间内第i面墙的表面温度,c
p
为墙体材料的比热容,ρ为空气密度,g
out
为房间与室外环境的换气量,t
out
(τ)为τ时刻室外环境的温度,g
adj
为房间与相邻房间的换气量,t
room+1
(τ)为τ时刻相邻房间的室内温度。
34.(四)建立人员智能体用能行为模型建筑内的个体通过开关及调节设备等行为动作对室内的耗能设备进行控制与调节。对于不同的建筑类型,使用人员的行为状态存在较大差异。例如,对于办公建筑,根据办公建筑特点,人员在办公建筑内的状态可分为上班(在房间办公)、上班(在走廊)、短暂离开办公室(吃饭)、下班回家;对于住宅建筑,人员在建筑内的状态可分为睡觉休息、外出上班、做饭、娱乐、洗漱等等。人员在不同办公状态下的用能动作将直接影响用电设备的使用状态,根据触发条件不同可将用能动作分为事件触发型和环境触发型两类。
35.事件触发型用能动作在特定事件(如在房间办公时开启设备、短暂离开办公室挂起设备、下班回家关闭设备等)下发生的概率为固定值,其概率模型可由下式计算:式中,p
ev
为事件触发型用能行为的概率,pe表示遇到特定事件时,事件触发型用能发生的概率,当事件为关闭不使用电器时,pe=pe或pn或ps或pw(取决于人员节能意识类型)。
36.环境触发型用能动作除与人员行为状态有关外,还与环境因素(如温度、湿度、照度等)有关。本发明主要涉及两类环境触发型用能动作,分别为照明设备的开关与空调设备的开关。人员在房间内时照明设备的开关动作概率可由下式计算:
式中,p
en
为人员在房间内时主动设备的开关动作概率,x表示房间内环境参数;xa和xb为控制行为发生的阈值。
37.空调设备的开关动作概率可由下式计算:式中,p
hot
为房间内人员感到闷热时打开冷热设备的概率,p
cold
为房间内人员感到寒冷时打开冷热设备的概率;t为室温;u为控制舒适度的阈值;l和k'为拟合参数;c1和c2为控制冷热设备开启概率减弱程度的系数(0≤c1<1,0≤c2<1),与房间内人数及人员习惯有关。
38.(五)建立建筑碳排放计算模型建筑碳排放模型可由下式计算:式中,c
room,j
(t)为房间j在t时间段内的碳排放量;c
con,j,x
(t)为t时间段内房间j中连续设备x的碳排放量;c
sta,j,y
(t)为t时间段内房间j中待机设备y的碳排放量;c
act,j,z
(t)为t时间段内房间j中主动设备z的碳排放量;c
h,j,v
(t)为t时间段内房间j中冷热设备v制热时的碳排放量,c
c,j,v
(t)为t时间段内房间j中冷热设备v制冷时的碳排放量;c
office
(t)为建筑在t时间段内的总碳排放量。
39.(六)进行建筑碳排放预测模拟建筑碳排放量预测模拟流程如图2所示。首先,利用(一)~(五)中建立的模型及参数进行预测模型初始化;其次,读取当前时间步的环境参数及各人员的行为信息,并更新人员移动后的位置信息;之后,计算人员行为触发用能设备状态变化的概率,并通过随机数和得到的概率的比较结果判断当前用能设备启停状态,计算更新当前时段各房间及建筑内的碳排放量;随后,判断人员行为是否使环境参数发生改变,若不发生改变则直接进入下一步,若发生改变则更新环境参数后进入下一步;最后,判断模拟时间步长是否达到设定值,
是则完成模拟,否则返回第二步进行下一个时间步的模拟。
40.不难发现,本发明构建了包含人员、设备、环境三类智能体的多智能体碳排放预测模型,充分考虑人员行为、环境影响以及用能设备耗能情况,实现不同时间尺度(小时、日、周、月等)、不同空间尺度(房间、楼层、楼宇)的精细化碳排放预测,引导用户进一步节能降碳,促进建筑楼宇实现节能降碳精细化管控,充分挖掘建筑的减碳潜力。
41.本发明的第二实施方式涉及一种基于多智能体模拟的建筑碳排放预测装置,如图3所示,包括:构建模块,用于构建多智能体模型,并对所述多智能体模型进行初始化,所述多智能体模型包括环境智能体、设备智能体以及人员智能体;第一建立模块,用于建立所述设备智能体的碳排放计算模型;第二建立模块,用于建立环境智能体的热/冷负荷计算模型;第三建立模块,用于建立人员智能体的用能行为模型;第四建立模块,用于建立建筑碳排放计算模型;预测模拟模块,用于利用所述多智能体模型、设备智能体的碳排放计算模型、环境智能体的热/冷负荷计算模型、人员智能体的用能行为模型和建筑碳排放计算模型进行建筑碳排放预测模拟,得到不同时间段建筑不同房间及建筑总体碳排放量。
42.其中,所述构建模块包括环境智能体构建单元、设备智能体构建单元和人员智能体构建单元。
43.所述环境智能体构建单元用于构建房间智能体和室外环境智能体,并进行初始化。所述环境智能体初始化包括房间智能体的平面布置、墙体内表面积、墙体内表面与空气表面的传热系数、墙体材料比热容、房间内空气密度、房间与外部环境的换气量、房间与相邻房间的换气量、窗户表面积及对应的遮阳系数的初始化;所述的室外环境智能体初始化包括室外环境温度、照度的环境参数的初始化。
44.所述设备智能体构建单元用于构建连续设备智能体、待机设备智能体、冷热设备智能体和主动设备智能体,并进行初始化。所述设备智能体初始化包括设备智能体的数量、类型、初始状态、不同状态下对应的电功率以及位置的初始化。
45.所述人员智能体构建单元用于构建环保型人员智能体、节约型人员智能体、正常型人员智能体和浪费型人员智能体,并进行初始化。所述人员智能体初始化包括人员数量、人员的节能意识类型以及人员所在位置的初始化。
46.所述构建模块还用于对全局参数进行初始化,所述全局参数进行初始化是指碳排因子的初始化。
47.所述第一建立模块,包括:第一建立单元,用于建立连续设备智能体的碳排放量计算模型:;第二建立单元,用于建立待机设备智能体的碳排放量计算模型:
;第三建立单元,用于建立主动设备智能体的碳排放量计算模型:;第四建立单元,用于建立冷热设备智能体的碳排放量计算模型:;其中,p
con
(τ)为τ时刻连续设备的电功率,p
con-1
为连续设备的额定功率,c
con
(t)为t时段内连续设备的碳排放量,p
sta
(τ)为τ时刻待机设备的电功率,s表示待机设备的状态,s0、s1和s2分别代表关闭、开启和待机,p
sta-1
为待机设备的额定功率,p
sta-2
为待机设备处于待机状态时的功率,c
sta
(t)为t时段内待机设备的碳排放量,p
act
(τ)为τ时刻主动设备的电功率,s'表示主动设备的状态,s'0和s'1分别代表关闭和开启,c
act
(t)为t时段内主动设备的碳排放量,p
cold
(τ)为τ时刻冷热设备在制冷时的电功率,p
heat
(τ)为τ时刻冷热设备在制热时的电功率,q
cool
(τ)为房间在τ时刻的冷负荷,q
heat
(τ)为房间在τ时刻的热负荷,cop
cool
为冷热设备的制冷系数,cop
heat
为冷热设备的制热系数,s''为冷热设备的状态,s''0和s''1分别代表关闭和开启,cc(t)为t时段内冷热设备在制冷时的碳排放量,ch(t)为t时段内冷热设备在制热时的碳排放量,c
grid
为碳排放因子。
48.所述第二建立模块通过动态传热方程计算采暖季热负荷q
heat
(τ)和供冷季冷负荷q
cool
(τ),所述动态传热方程为:
其中,cr为房间内的空气热容,t
room
为房间内需要维持的温度,pn(τ)为τ时刻房间内第n个用电设备的电功率,ξn为房间内第n个用电设备的散热系数,mm为房间内第m个人的质量,ζm为房间内第m个人的散热系数,s
win,k
为房间内第k扇窗户的面积,dk为房间内第k扇窗户的日辐射得热因子,z
win,k
为房间内第k扇窗户的遮阳系数,si为房间内第i面墙的内表面面积,h
in
为墙体内表面与空气表面的传热系数,tr(τ)为τ时刻房间内的温度,ti(τ)为τ时刻房间内第i面墙的表面温度,c
p
为墙体材料的比热容,ρ为空气密度,g
out
为房间与室外环境的换气量,t
out
(τ)为τ时刻室外环境的温度,g
adj
为房间与相邻房间的换气量,t
room+1
(τ)为τ时刻相邻房间的室内温度。
49.所述第三建立模块包括:分类单元:用于将人员智能体的用能行为分为事件触发型和环境触发型;事件触发型建立单元,用于建立事件触发型用能行为的概率模型:,其中,p
ev
为事件触发型用能行为的概率,pe为pe或pn或ps或pw,pe、pn、ps和pw分别表示环保型人员、节约型人员、正常型人员和浪费型人员关闭不使用电器的可能性;环境触发型建立单元,用于建立环境触发型用能行为的概率模型:,,其中,p
en
为人员在房间内时主动设备的开关动作概率,x表示房间内环境参数,xa和xb为控制主动设备的开关行为发生的阈值;p
hot
为房间内人员感到闷热时打开冷热设备的概率,p
cold
为房间内人员感到寒冷时打开冷热设备的概率,l和k'为拟合参数;c1和c2为控制冷热设备开启概率减弱程度的系数,t为房间内温度参数,u为控制舒适度的阈值。
50.所述第四建立模块建立的建筑碳排放计算模型为:
,其中,c
room,j
(t)为房间j在t时间段内的碳排放量;c
con,j,x
(t)为t时间段内房间j中连续设备x的碳排放量;c
sta,j,y
(t)为t时间段内房间j中待机设备y的碳排放量;c
act,j,z
(t)为t时间段内房间j中主动设备z的碳排放量;c
h,j,v
(t)为t时间段内房间j中冷热设备v制热时的碳排放量,c
c,j,v
(t)为t时间段内房间j中冷热设备v制冷时的碳排放量;c
office
(t)为建筑在t时间段内的总碳排放量。
51.所述预测模拟模块包括:读取单元,用于读取当前时间步的环境参数及各人员的行为信息,并更新人员移动后的位置信息;计算单元,用于基于所述人员智能体的用能行为模型计算人员行为触发用能设备状态变化的概率;第一判断单元,用于根据所述概率与随机数的比较结果判断当前用能设备启停状态,基于所述建筑碳排放计算模型计算更新当前时段各房间及建筑内的碳排放量;第二判断单元,判断人员行为是否使环境参数发生改变;更新单元,用于在人员行为使环境参数发生改变时更新环境参数;第三判断单元,用于在人员行为没有使环境参数发生改变时,判断模拟时间步长是否达到设定值,是则完成模拟,否则返回所述读取单元进行下一个时间步的模拟。
52.本发明的第三实施方式涉及一种电子设备,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现第一实施方式中基于多智能体模拟的建筑碳排放预测方法的步骤。
53.本发明的第四实施方式涉及一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一实施方式中基于多智能体模拟的建筑碳排放预测方法的步骤。
54.本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、cd-rom、光学存储器等)上实施的计算机程序产品的形式。本发明实施例中的方案可以采用各种计算机语言实现,例如,面向对象的程序设计语言java和直译式脚本语言javascript等。
55.本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
56.这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特
定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
57.这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
58.尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
59.显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1