图象数据的自适应可变长度译码方法

文档序号:6774385阅读:122来源:国知局
专利名称:图象数据的自适应可变长度译码方法
本申请是1994年12月16日递交的第94191195.0号专利申请的分案申请。
本发明涉及数字图象数据的自适应可变长度编码和译码方法,更具体地涉及通过根据图象数据的统计特性自适应地执行可变长度编码和译码来改进传输数据的压缩效率的自适应可变长度编码和译码方法。
最近,在传输和接收视频和音频信号的装置中,已经广泛采用了将视频和音频信号编码为数字信号然后传输或者存储在存储器中以及对数字信号译码然后再生的方法。
然而,在将视频信号编码为数字数据的情形下,数据量大。因此,为了通过去除数字视频信号中所含的冗余数据来降低总数据量,应执行离散余弦变换(DCT)编码、差分脉冲编码调制(DPCM)、向量量化或可变长度编码(VLC)。


图1是图象数据的一般编码系统的示意框图。该装置包括用于对N×N块执行DCT功能以及用于量化DCT系数的装置11和12,用于对量化数据进行可变长度编码以及用于进一步压缩数据量的装置13和14,以及与对量化数据进行反向量化和DCT操作然后执行运动补偿相关的装置15、16、17、18、19、A1、A2、SW1和SW2,该装置对内部方式或中间方式的图象数据进行编码。
图2是图象数据的一般译码系统的示意框图。该装置对由图1所示的编码系统编码的图象数据进行译码和再生。
现在简述图1和图2分别示出的编码系统和译码系统的操作。
在图1中,通过输入端口10输入的视频信号在DCT11中变为以N×N块为单位的频域内的信号,尽管块的大小一般是N1×N2,但是为方便起见,假设N1=N2=N。变换系数的能力(energy)简单地集中在低频域。每块的数据变换由离散余弦变换、沃尔什一哈达马德变换、离散傅立叶变换或离散正弦变换方法执行。在此,变换系数由DCT操作获得。
量化器12通过预定量化过程将DCT系数变为恒定电平的代表值。
可变长度编码器13利用代表值的统计特性对它们进行可变长度编码,从而进一步压缩该数据。
同时,量化步长Qss(它根据缓冲器14的状态-满-而变化,在缓冲器14中存储可变长度编码的数据)控制量化器12,从而调节传输位速率。量化步长Qss也被传输到接收侧,以便用于译码系统。
另外,一般在相继屏幕之间有许多近似的部分。因此,在具有运动的屏幕的情形下,通过对该运动估值获得一个运动向量MV,利用运动向量MV对数据进行补偿。于是,在相邻位置的屏幕之间的差分信号变得非常小,从而允许对传输数据进一步压缩。
为了执行这种运动补偿,图1所示的反向量化器(Q-1)15对从量化器12输出的量化数据进行反向量化。之后,反向量化的数据在反向DCT装置(DCT-1)16中进行反向DCT处理,成为空间域的视频信号。从反向DCT装置16输出的视频信号存储在帧部件的帧存储器17中。运动估值器18在帧存储器17中所存储的帧数据中搜索具有与输入端口10的N×N块最近似的模式的块,并对块之间的运动估值以获得一个运动向量MV。该运动向量MV传输到接收侧,以便用于译码系统,并同时传输到运动补偿器19。
运动补偿器19从运动估值器18接收运动向量MV,并从帧存储器17先前输出的帧数据中读出与运动向量MV相应的N×N块,然后将所读出的N×N块提供到与输入端口10相连的减法器A1。然后,减法器A1获得提供到输入端口10的N×N块与具有从运动补偿器19提供的近似模式的N×N块之间的差值。减法器A1的输出数据被编码,然后传输到接收侧,如上所述。这就是说,最初,对于一屏(帧内)的视频信号完全编码,然后传输。对于后续屏(帧间)的视频信号,只对由于运动造成的差分信号进行编码然后传输。
同时,其运动在运动补偿器19中得以补偿的数据在加法器A2中与从反向DCT装置16输出的视频信号相加,之后存储在帧存储器17中。
刷新开关SW1和SW2在一定间隔(在此,是一组画面的周期或一个GOP周期)由控制装置(未示出)断开,使得在帧内方式的情形下将输入的视频信号编码为PCM方式然后传输,以及使得在帧间方式的情形下只对差分信号编码然后传输,从而在恒定周期(一个GOP)刷新累积编码误差。同样,刷新开关SW3在恒定时间周期(一个GOP)内允许从接收侧去除信道上的传输误差。
以这种方式,被编码的图象数据VC被传输到接收侧,然后输入到图2所示的译码系统。被编码的图象数据VC在可变长度译码器21中通过与编码过程相反的过程被译码。从可变长度译码器21输出的数据在反向量化器22中反向量化。此时,反向量化器22根据从编码系统提供的量化步长Qss调节输出DCT系数的大小。
反向DCT装置23对从反向量化器22提供的频域内的DCT系数进行反向DCT处理,变为空间域内的图象数据。
另外,从图1所示的编码系统传输的运动向量MV被提供到译码系统的运动补偿器24。运动补偿器24从帧存储器25中所存储的先前帧数据中读出与运动向量MV相应的N×N块,补偿该运动,然后将补偿后的N×N块提供到加法器A3。然后,加法器A3将反向DCT处理的DPCM数据加到从运动补偿器24提供的N×N块数据上,然后输出到一个显示器。
图3A、3B和3C示意性地示出对图象数据进行编码的过程。利用DCT等方法对图3A所示的N×N块的抽样数据进行DCT处理,得到频域的DCT系数,如图3B所示。对该DCT系数进行量化并以锯齿形模式扫描,然后以行程长度和电平长度的形式编码,如图3C所示。
当从低频域到高频域执行扫描以扫描N×N块时,如图3C所示,将“行程”和“电平”设为一对,表示为[行程,电平],然后对其编码。
这里,“行程”代表在N×N块的量化系数中间不为“0”的系数之间“0”的出现次数,“电平”与不为“0”的系数的绝对值相应。
例如,在8×8块的情形下,行程分布在“0”至“63”之间,电平根据从量化器输出的数据值变化。这就是说,如果量化输出值指的是从“-255”至“+255”之间的整数,则电平具有从“1”至“+255”之间的值。此时,正号或负号由附加的正负号位表示。以这种方式,当将[行程,电平]对设为一个符号时,如果行程或电平大,则该符号的概率在统计上非常小。
因此,如图4所示,根据该符号的概率将块分为正规区域和换码区域。对于符号的概率相对高的正规区域,在编码中采用霍夫曼编码。对于符号概率低的换码区域,在编码中使用固定预定长度的数据。这里,根据霍夫曼编码,符号的概率越高,代码越短,反之亦然。
另外,换码序列ESQ(其中换码区域的数据被编码)由一个换码代码ESC、行程、电平和正负号数据S组成,每个ESQ具有预定数目的位,由下述等式(1)表示ESQ=ESC+RUN+L+S(1)例如,如上所述,如果在8×8块中量化值是从“-255”到“+255”,则换码序列具有总共21位的恒定数据长度,因为换码代码数据ESC是6位,行程数据RUN是6位,电平数据L是8位,正负号数据S是1位。
以这种方式,根据常规可变长度编码方法,因为各种附加信息也与被编码的数据一起传输,而且根据数据的统计特性由一个可变长度编码表设定的换码序列集具有恒定固定长度,所以在对传输数据编码时对数据量的压缩有限。
因此,本发明的一个目的在于提供一种自适应可变长度编码方法,该方法在利用块类型(即中间/内部方式)以锯齿形模式扫描的同时,通过根据当前扫描位置和量化步长,在多个可变长度编码表中选择一个最佳的可变长度编码表来改善数据的压缩效率。
本发明的另一个目的在于提供一种对利用上述自适应可变长度编码方法编码的数据进行译码的方法。
为完成上述目的,本发明提供一种图象数据的自适应可变长度编码方法,利用量化的正交变换系数以锯齿形模式进行扫描,其特征在于该方法包括步骤设置具有不同模式的多个可变长度编码表;根据当前处理的块的内部/中间方式信息、锯齿形扫描位置和量化步长选择所述多个可变长度编码表中的一个表;根据所选择的可变长度编码表对正交变换系数进行可变长度编码。
本发明还提供一种图象数据的自适应可变长度译码方法,其特征在于该方法包括步骤设置具有不同模式的多个可变长度译码表;输入从编码系统传输的内部/中间方式的信息;输入从编码系统传输的量化步长;在锯齿形扫描时检测位置信息;根据所述内部/中间方式信息、量化步长和位置信息,选择所述多个可变长度译码表中的一个表;根据所选择的可变长度编码表对所收到的数据进行可变长度译码。
图1是图象数据的一般编码系统的框图;图2是图象数据的一般译码系统的框图;图3A和图3B是解释根据图1所示的装置的数据处理过程的示意图;图4示出常规可变长度编码和译码表;图5是用于实现根据本发明的自适应可变长度编码方法的可变长度编码器的示意框图;图6A和图6B图示了在根据本发明的自适应可变长度编码方法中用于选择分区为预定数目的可变长度编码表的方法,其中图6A代表内部方式,而图6B代表中间方式;以及图7A、7B和7C是在图6A和图6B所示的第1区域、第2区域和第P区域的每个符号的直方图[行程,电平]。
在此及下文,结合附图描述本发明的最佳实施方式。
在根据本发明的自适应可变长度编码方法中,使用多个可变长度编码表。在以锯齿形模式扫描一个块时,该表是根据块类型、量化步长和当前的扫描位置选择的。这种选择与根据块类型(即内部方式/中间方式或亮度信号/色彩信号)、量化步长和当前锯齿形扫描位置而变化的[行程,电平]数据的统计特性相应,现予以详述。
与用于对输入的块图象数据顺序编码的内部方式相比,用于对当前块数据和运动补偿的块数据之间的差分信号进行编码的中间方式产生大多为“0”的DCT系数,几乎不产生更大的值。这是因为运动补偿估值误差中的变化一般小于原始视频信号的变化。
另外,在空间域和窄带宽中依赖于均分(decimation)的色彩的统计特性不同于亮度的统计特性。
因此,根据内部/中间方式和亮度/色彩信息,可以有四种块类型,即(内部,亮度)、(内部,色彩)、(中间,亮度)、(中间,色彩)。然而,对于本发明中的块类型,不包括亮度/色彩信息,而只考虑内部/中间方式,因为色彩统计依赖于色彩信号的向下抽样结构。
另外,在量化步长大的情形下,在高频分量中DCT系数不高,且在量化器以锯齿形模式扫描时,许多DCT系数产生为“0”。这就是说,为了利用人类视觉特性,将DCT系数分为主要加权矩阵。因为高频分量的加权矩阵大,所以当当前扫描的是高频分量时,经常产生小值(包括“0”),而几乎不产生大值。
因此,本发明提出利用多个可变长度编码/译码表的自适应可变长度编码/译码方法,在表中将块类型(内部/中间方式)、扫描位置和量化步长组合起来,该表称为霍夫曼编码本。
另外,本发明用在图1所示的一般编码系统中并用在图2所示的一般译码系统中。
图5是用于实现根据本发明的自适应可变长度编码方法的可变长度编码器的示意框图;根据图5,由锯齿形扫描器31以锯齿形模式扫描量化的DCT系数。
可变长度编码表选择器32根据块类型(内部/中间方式)、量化步长Qss和扫描位置SP输出一个控制信号,用于选择相应的第1个至第P个可变长度编码表33.1,33.2,…,33.P。
根据所选择的可变长度编码表,对从锯齿形扫描器31输出的量化的DCT系数进行可变长度编码,然后传输到图1所示的缓冲器14。
图2所示的译码系统的可变长度译码器21以与图5所示的可变长度编码过程相反的次序对编码的数据进行可变长度译码。
接下来,参照图6A和6B以及图7A至7C详述选择多个可变长度编码/译码表的方法。
图6A示出对于内部方式根据量化步长Qss和当前扫描位置SP(在锯齿形扫描期间)选择的P个可变长度编码表T1,T2,…,TP。图6B示出对于中间方式根据量化步长Qss和当前扫描位置SP(在锯齿形扫描期间)选择的P个可变长度编码表T1,T2,…,TP。
“0”扫描位置SP与DC分量相应,“63”扫描位置SP代表相应块中最后的扫描位置,且量化步长Qss具有从“0”到“62”范围内的值。
首先,为了选择P个可变长度编码表T1,T2,…,TP中的一个,要确定当前处理块方式是中间方式的还是内部方式的。
这就是说,如图6A和图6B所示,用于选择可变长度编码表T1,T2,…,TP的块根据该方式而不同。换言之,与中间方式相比,内部方式对于第1个和第2个可变长度编码表T1和T2具有较大的选择块,对于第P可变长度编码表TP具有较小选择块。
在所确定的方式下,根据量化步长Qss和扫描位置SP,选择第1个、第2个或第P个可变长度编码表T1,T2或TP。
根据所选择的可变长度编码表对量化的DCT系数进行可变长度编码。
在此,图6A和图6B所示的根据内部方式和中间方式在(SP,Qss)平面上分为P个区的一个例子可表示如下。
在内部方式中
区域1SP+Qss<K1;区域2K1≤SP+Qss<K2;以及区域PKP-1≤SP+Qss<KP在中间方式中区域1SP+Qss<L1;区域2L1≤SP+Qss<L2;以及区域PLP-1≤SP+Qss<LP能够对各种试验状态的足够的统计分析的基础上试验性地搜索如上所述的适当的分区。这些状态包括如视频序列、位速率、GOP和分区方法这样的因素。
图7A、7B和7C示出图6A和6B所示的可变长度编码表的例子。
可变长度编码表具有一个正规区域和一个换码区域,它们根据[行程,电平]的统计特性而不同。
这就是说,第1个、第2个,…,第P个表T1,T2,…,TP具有具有不同模式的正规区域和换码区域,第P个表TP具有比第1个或第2个表T1或T2小的正规区域。
同时,如果行程和/或电平长度具有大的值,则[行程,电平]符号趋于具有低的概率。如图4所示,换码区域的各符号具有21位的固定长度,由6位换码代码、8位行程和1位正负号数据相加获得。
然而,在换码编码中,因为在行程和电平域中有冗余,所以数据量可以降低。这是说,对于两维DCT系数,表示行程所需的位数取决于锯齿形扫描期间的扫描位置,而表示电平所需的位数取决于量化步长。另外,内部编码块和中间编码块的量化加权矩阵互不相同。
具有21位固定长度的新换码序列ESQ可以利用根据上述等式(1)的前述特性修改为具有可变长度,其中ESC由6位组成,RUN由0至6位组成,L由1至8位组成,S由1位组成,行程数据依赖于扫描位置,电平依赖于量化器。
因此,因为修改后的换码序列具有从8到21位范围内的可变长度,与21位的固定长度相比,能进一步压缩图象数据。
在对新换码序列进行译码时,因为各当前扫描位置对于编码系统和译码系统是自动匹配的,所以表示行程值所需的位数可被匹配,而不传输附加信息。另外,在电平长度情形下,因为量化步长为了反向量化而传输到译码系统,所以在协调表示电平所需的位数时能够使用传输的量化步长,不需传输附加信息。
通过可变地调节换码序列的长度来改进压缩效率的上述可变长度编码和译码方法公开在本发明的受让人于1993年6月1日递交的美国专利申请08/069,914中。
根据本发明,可对编码侧和译码侧设置多个可变长度表,它们与利用一个常规单个表的情形相比,在硬件上更复杂些。然而,本发明用在当需要高数据压缩率时的情形。另外,将编码侧所产生的相应方式、量化步长和扫描位置信息传输到译码侧。该方式和量化步长信息是以恒定时间周期传输的,或者无论何时有改变时传输。扫描位置信息并不单独传输,只是在获得译码侧的[行程,电平]值之后通过累积运行值来自动获得的。
因此,尽管与所选择的可变长度编码表有关的信息相对于传输到译码侧的块数据并不单独传输,但是在编码期间选择的可变长度编码表可以与从编码侧传输的方式和量化步长以及在译码侧从运行值自动计算的位置信息相同。于是,使用与编码时所采用的相同的可变长度编码表用于对传输的块数据进行译码。
如上所述,根据本发明的方法能够提高数据压缩效率,使得通过选择具有正规区域和换码区域的多个可变长度编码表中的一个,利用方式、量化步长和锯齿形扫描位置信息对图象数据编码和译码。
另外,根据本发明,没有表示在编码期间所选择的可变长度编码表的附加位需要传输以译码。能够通过可变地调节在所选择的可变长度编码表的换码区域中待编码的行程和电平长度来进一步压缩传输数据。
根据本发明的自适应可变长度编码/译码方法能够改进对数字传输的数据的压缩效率,并可适用于各种技术领域,包括数字通信、多媒体和个人计算机系统以及数字视频装置(如高清晰度电视或数字盒式录象机)。
权利要求
1.一种图象数据的自适应可变长度译码方法,其特征在于该方法包括步骤接收从编码系统传输的内部/中间方式信息;接收从编码系统传输的量化步长;在锯齿形扫描时检测位置信息;根据所述内部/中间方式信息、量化步长和位置信息,选择多个可变长度译码表中的一个表;根据所选择的可变长度译码表对所收到的数据进行可变长度译码。
2.权利要求1的自适应可变长度译码方法,其中所述可变长度译码表选择步骤根据所述方式信息输入步骤中当前处理块的所述内部/中间方式信息具有多个含有不同模式的正规区域和换码区域的可变长度译码表的选择范围。
3.权利要求2的自适应可变长度译码方法,其中所述可变长度译码表是根据由相应方式确定的范围内所述扫描位置和量化步长选择的。
4.权利要求1的自适应可变长度译码方法,其特征在于所选择的可变长度译码表的换码区域数据在可变长度译码步骤中被译码为与可变行程长度和电平长度相应的[行程,电平]数据。
全文摘要
一种自适应可变长度编码/译码方法,它根据内部方式/中间方式状态、量化步长和当削锯齿形扫描位置,执行最佳可变长度编码和译码,使得根据[行程,电平]数据的统计特性设置多个具有不同模式的正规区域和换码区域的可变长度编码表。根据方式、量化步长和扫描位置选择一个可变长度编码表,根据所选择的可变长度编码表对正交变换系数进行可变长度编码。
文档编号G11B20/10GK1280421SQ00108368
公开日2001年1月17日 申请日期1994年12月16日 优先权日1993年12月16日
发明者赵在汶, 郑济昌 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1