能有效克服噪声的mram的制作方法

文档序号:6760257阅读:182来源:国知局
专利名称:能有效克服噪声的mram的制作方法
技术领域
本发明涉及存储器件,特别涉及利用非易失磁存储单元的磁随机存取存储器(此后简称为MRAM)。
背景技术
近来,对于作为能够实现高速读和写操作的大容量存储器件的MRAM的研究正迅猛发展。关于MRAM,主要采用包括大量存储单元,并利用所谓的隧道结的结构构成。隧道结利用的是中间夹着非磁性膜的两个磁性层间的电阻,根据所属领域已知的自旋在两磁性层间是彼此平行的还是反向平行的而不同的事实。该类MRAM包括用于选择要访问的特定存储单元的晶体管。
参见图1,该图将介绍现有的MRAM。图1所示的MRAM包括衬底1和安装在衬底1上的集成器件部分2。集成器件部分2通过引线3与引线端子4连接。衬底1、集成器件部分2、引线3和引线端子4由树脂模5模制。
集成器件部分2包括数个晶体管部分和数个存储器件部分。每个存储器件部分都用作存储单元。每个晶体管部分用于选择特定的存储单元。
参见图2,图中介绍了集成器件部分2的结构。集成器件部分2包括衬底1上的第一导体11、第一导体11上的第一绝缘层12、第一绝缘层12上的第一铁磁部件或层13、覆盖第一铁磁部件13的第二绝缘层14、第二绝缘层14上的第二铁磁部件15、覆盖第二铁磁部件15的第三绝缘层16和都形成于第三绝缘层16上的第四绝缘层17和第二导体18。第一铁磁部件13、第二绝缘层14和第二铁磁部件15的组合构成作为存储器件部分之一的磁隧道结器件。
每个第一和第二导体11和18这样排列,使得在电流加于第二铁磁部件15上时,磁场作用于其上。在第一和第二导体11和18上都加有电流时,这些电流产生磁场,并且这些磁场结合构成复合磁场。在复合磁场作用下,第二铁磁部件15的磁化旋转并反转。另一方面,第一铁磁部件13的磁化例如被具有高饱和磁化强度的铁磁材料固定。
第一铁磁部件13由CoPt合金构成,第二铁磁部件15由NiFe合金构成。第二绝缘层14由Al2O3等构成。
与此同时,能够高速工作的高集成半导体器件不仅包括MRAM,而且还包括动态随机存取存储器件(DRAM)、只读存储器(ROM)、微处理器单元(MPU)、和图像处理器算术逻辑单元(IPALU)等等。近来,这些器件的计算速度和信号处理速度显著提高。这种计算速度和信号处理速度的提高,使得这些器件中的电流急剧或快速变化。电流的快速变化是引起高频感应噪声的主要因素。
另一方面,电子元件和电子设备的重量、厚度和尺寸也在迅速减小。因此,作为电子元件的半导体器件的集成度和半导体器件在印刷电路板上的安装密度增加。因此,如果电子元件具有高集成度,或者以高密度安装电子元件,则信号线彼此非常靠近。再加上上述信号处理速度的提高,非常容易引发高频辐射噪声。
在上述电子电路中,已通过优化元件在印刷电路板上的布置方面和两者间的布线方面的设计,或者通过在电源线中插入例如去耦电容器等集总常数元件,作过抑制这种噪声的尝试。
然而,在工作速度提高的半导体器件或印刷电路板中,由此产生的噪声含有谐波成分,会使信号路径的性质与分布常数电路的类似。这种情况下,采取集总常数电路的现有对付噪声的方法不再有效。此外,通过优化电子部件和布线的配置,对噪声的减少造成限制。
与其它类型的半导体随机存取存储器(RAM)一样,在上述MRAM工作期间,电流的高速度变化造成的谐波失真,是造成高频辐射噪声的主要因素。另一方面,叠加于写电流或磁性层上的噪声,会引起磁性层磁化量的波动。结果,写过程需要附加操作。如果该噪声与读期间的信号混合,则需要例如重复读操作等附加过程。换言之,如果这种对付噪声的方法无效,则在写和读数据时,基本的写和读速度都会下降。因此,在MRAM工作时,重要的不仅是防止噪声传播到其它元件或部分,而且要防止由于该噪声造成的基本写和读速度下降。

发明内容
因此,本发明的目的是提供一种大容量非易失存储器,能够抑制噪声的产生,具有优异的抗噪声能力,所以能够以相当高的速度进行写和读操作。
本发明另一目的将随着介绍的深入而变得更清楚。
本发明人已发明了一种在高频下具有高磁损耗的复合磁性材料,并发现了一种方法有效地抑制由于在外部发射源附近配置该复合磁性材料而由半导体器件或电子电路产生的外部发射或不必要辐射。从近期的研究可以发现,利用磁损耗减弱外部发射的效果以等效电阻成分加于作为外部发射源的电子电路上的机制为基础。这里,等效电阻成分的大小取决于磁性材料的磁损耗项μ”的大小。具体说,只要磁性材料的面积一定,等效插入电子电路的电阻成分的大小基本上正比于磁性材料的μ”和厚度。这里应注意,磁损耗项μ”是磁性材料的相对磁导率的虚数部分。因此,为了利用更小或更薄的磁性材料将外部发射减弱到希望的水平,μ”值必须更大。例如,为了在例如半导体器件模体内部等非常小的区域内,利用磁损耗材料防止外部发射,磁损耗项μ”必须具有非常大的值。
在研究利用溅射或汽相淀积制造的软磁性材料期间,本发明人将重点放在了其中均匀分布有细磁性金属颗粒或例如陶瓷等非磁性材料颗粒的粒状磁性材料的优异磁导率特性上。作为对被非磁性材料包围的磁性金属颗粒的微细结构研究的结果,本发明发现,在粒状磁性材料中的磁性金属颗粒的比例落在一特定范围内时,在高频带,可以获得优异的磁损耗特性。
应注意,粒状磁性薄膜是磁性薄膜,其中,磁性颗粒的尺寸小到几纳米至几十纳米,每个颗粒具有被包括陶瓷成分的晶界限制的微细结构,在几十MHz至几GHz的高频带,这种结构表现出非常大的磁损耗。粒状磁性薄膜可以称为微细晶体薄膜。
到目前为止,已对具有表示为M-X-Y(M是磁性金属元素,Y是选自氧、氮、氟中的一种元素,X是除M和Y之外的元素)的组分的粒状磁性材料进行了大量研究。发现粒状磁性材料具有低磁损耗和高饱和磁化强度。为了在M-X-Y粒状磁性材料中实现较大的饱和磁化强度,需要增大成分M的比例。因此,例如高频感应器件或变压器的磁芯等一般应用中,M-X-Y粒状磁性材料中成分M的比例限制在使饱和磁化强度等于只包括成分M的体金属磁性材料的饱和磁化强度的约80%以上的一个范围。
本发明人在具有表示为M-X-Y(M是磁性金属元素,Y是选自氧、氮、氟中的一种元素,X是除M和Y之外的元素)的组分的粒状磁性材料中成分M的很宽比例范围进行了研究。结果发现,在任何一种组分系统中,如果磁性金属M落在一定范围内,则在高频带内都表现出具有大磁损耗。
成分M比例的最高区使得饱和磁化强度为只包括成分M的体金属磁性材料的饱和磁化强度的80%以上。该区对应于已积极研究和开发出的具有高饱和磁化强度和低损耗的M-X-Y粒状磁性材料。上述区域内的这些材料的实数磁导率部分μ’和饱和磁化强度都大,因此可用于例如上述高频感应器等高频微磁性器件。然而,决定电阻的成分X和Y的比例都小,以使电阻小。因此,如果膜的厚度增大,高频下的磁导率下降,进而在高频带发生涡流损耗。所以,这些材料不适于作对付噪声的磁性膜。
成分M比例的下一区使饱和磁化强度不大于只包括成分M的体金属磁性材料的饱和磁化强度的80%,不小于所说饱和磁化强度的60%。在该区,电阻较大,等于约100μΩcm。因此,即使材料的厚度为几微米的数量级,涡流损耗也小,多数磁损耗由自然谐振引起。因此,磁损耗项μ”具有窄的频率分布宽度。所以,该区适于在窄频带范围内克服噪声(高频电流抑制)。
成分M比例的第三区使饱和磁化强度不大于只包括成分M的体金属磁化材料的饱和磁化强度的60%,且不小于该饱和磁化强度的35%。在该区,电阻大于上述区,等于约500μΩcm。因此,涡流损耗极小,成分M颗粒间的磁作用小。因此,自旋热扰动增大,引起自然谐振的频率波动。结果,磁损耗项μ”在很宽的频带范围的值大。所以,该比例的该区适于抑制很宽频带范围内的高频电流。
另一方面,由于不会在成分M颗粒间引起基本的磁相互作用,所以成分M的较小比例区可以提供超磁特性。
在磁损耗材料设置于噪声辐射部分附近,以抑制高频电流时,磁损耗项μ”和磁损耗材料的厚度δ的乘积μ”·δ给出材料设计的标准。为了实现对几百MHz的高频电流的有效抑制,必须满足以下关系式μ”·δ≥约1000(μm)具体说,如果磁损耗材料的磁损耗项μ”=1000,则厚度必须等于1微米以上。最好不选用这些具有低电阻且容易引起涡流的材料。而采用使电阻为100μΩcm的组分。在用于本发明的组分系统中,成分M的比例最好是落在使饱和磁化强度不大于只包括成分M的体金属磁性材料的饱和磁化强度的80%,且不小于该值的35%的区。使饱和磁化强度等于该饱和值的35%或以上的区是不表现超磁性的区。
本发明人通过将上述磁性材料应用于MRAM做出本发明。
根据本发明,提供一种磁随机存取存储器,包括采用磁性材料的存储器件部分和设置在磁性材料附近用于抑制存储器件部分中的高频电流的高频电流抑制器。


图1是现有技术MRAM的剖面图;图2是图1所示MRAM的特征部分的放大剖面图;图3是根据本发明第一实施例的MRAM的剖面图;图4是图3所示MRAM的特征部分的放大剖面图;图5是粒状磁性材料的磁损耗项μ”的频率特性的曲线图;图6是具有靠近设置的粒状磁性薄膜的微波传输带的传输特性S21的频率特性的曲线图;图7是根据本发明第二实施例的MRAM的剖面图;图8是根据本发明第三实施例的MRAM的剖面图。
具体实施例方式
首先参见图3,该图将介绍了根据本发明第一实施例的MRAM。
图3所示的MRAM包括衬底21和安装在衬底21上的集成器件部分22。集成器件部分22通过引线23与引线端子24连接。衬底21、集成器件部分22、引线23和引线端子24一起模制在由塑料树脂构成的模体25中。模制时,高频电流抑制器26设置在衬底21的下表面上。另一高频电流抑制器27设置在集成器件部分22之上,并与之保持一定间隔。以后将详细介绍高频电流抑制器26和27。
集成器件部分22具有以后将变得更清楚的数个存储器件部分。每个存储器件部分用作一个存储单元。集成器件部分22具有设置在每个存储器件部分和衬底21之间,用于选择特定存储单元的晶体管部分(未示出)。
参见图4,该图将介绍集成器件部分22的结构。集成器件部分22包括衬底21上的第一导体31、第一导体31上的第一绝缘层32、第一绝缘层32上的第一铁磁部件33、覆盖第一铁磁部件33的第二绝缘层34、第二绝缘层34上的第二铁磁部件35、覆盖第二铁磁部件35的第三绝缘层36和都形成于第三绝缘层36上的第四绝缘层37和第二导体38。第一铁磁部件33、第二绝缘层34和第二铁磁部件35构成作为上述存储器件部分之一的磁隧道结器件。
第一和第二导体31和38中的每一个都这样设置,使得当电流加于第二铁磁部件35上时,磁场作用于其上。在第一和第二导体31和38上都加电流时,这些电流产生磁场,这些磁场结合成复合磁场。在复合磁场的作用下,第二铁磁部件35的磁化旋转并反转。另一方面,第一铁磁部件33的磁化例如被使用具有高饱和磁化强度的铁磁材料固定。
第一铁磁部件33由CoPt合金构成,第二铁磁部件35由NiFe合金构成。第二绝缘层34由Al2O3等构成。
第一和第二高频电流抑制器26和27中的每一个都用于抑制流过第一或第二导体31或37的脉冲电流的谐波干扰,以便抑制高频辐射噪声,并防止该噪声叠加到第一和第二铁磁部件33和35间的读电流上。
下面,介绍高频电流抑制器26和27的形成。高频电流抑制器26和27中的每一个都包括含有Fe、Al和O的粒状磁性薄膜。
在配有氧气供应器的真空室内,利用Fe70Al30合金作淀积材料,利用汽相淀积在聚酰亚胺板上淀积膜。淀积前的真空度为1.33×10- 4Pa或以下。淀积期间氧气流量为3.0sccm。汽相淀积后,在300℃的温度下,在真空磁场中热处理两小时。于是,得到粒状磁性薄膜。
薄膜的厚度为2.0微米,d.c电阻为530μΩcm,各向异性磁场Hk为18 0e(1422A/m),饱和磁化强度Ms为16800高斯(1.68T),相对带宽bwr为148%。可以通过取μ”值是最大μ”max的50%的两个频率间的频带宽,并以其中心频率将频率带宽归一化,得到相对带宽bwr。薄膜的饱和磁化强度为只包括磁性金属的体材料的饱和磁化强度的72.2%。
参见图5,磁损损耗项μ”具有该图所示的高频特性。横坐标和纵坐标表示频率和作为复合磁导率的虚数部分μ”的磁损耗项。
对这样得到的薄膜的高频电流抑制效应进行了研究。具体说,将该薄膜直接设置在长为75mm,特性阻抗为50Ω的微波传输带上。利用网络分析仪,测量传输特性,测量结果示于图6。利用粒状磁性薄膜,S21传输特性从约100MHz单调地减小和在约3GHz呈现-10dB。结果表明S21传输特性取决于μ”的分布,抑制效果的水平取决于μ”与厚度δ的乘积。
在上述介绍中,介绍了利用真空汽相淀积形成该膜。或者,可以利用溅射、离子束淀积和气体淀积。只要能均匀淀积磁损耗材料,对形成薄膜的技术没有限制。
参见图7,该图将介绍本发明第二实施例的MRAM。
图7所示的MRAM包括衬底41和安装在衬底41上的集成器件部分42。集成器件部分42通过引线43与引线端子44连接。衬底41、集成器件部分42、引线43和引线端子44一起由树脂模45模制。模制时,高频电流抑制器46设置在衬底41的下表面上。集成器件部分42的结构与图4所示的集成器件部分22类似。
高频电流抑制器46包括由粒状磁性材料构成的薄膜。该薄膜可以按与结合图3和4介绍的MRAM的高频电流抑制器26基本类似的方式形成。该薄膜最好由能够使汽相淀积等后不需要热处理的材料和组分构成。
参见图8,该图将介绍本发明第三实施例的MRAM。
图8所示的MRAM包括衬底51和安装在衬底51上的集成器件部分52。集成器件部分52通过引线53与引线端子54连接。衬底51、集成器件部分52、引线53和引线端子54一起由树脂模具55模制。模制时,高频电流抑制器56设置在集成器件部分52之上,并与之有一定间隔。集成器件部分52的结构与图4所示的集成器件部分22类似。高频电流抑制器56包括由粒状磁性材料构成的薄膜。例如,该薄膜可以按与结合图3和4介绍的MRAM的高频电流抑制器26基本类似的方式形成。通过利用例如聚酰亚胺等树脂模55模制,将这样得到的高频电流抑制器56设置于集成器件部分52上。
在上述任何一种MRAMs中,都可以减少信号脉冲电流的谐波干扰,并可以减少不希望的发射或辐射。因此,可以避免数据写速度和数据读速度下降。
权利要求
1.一种磁随机存取存储器,包括利用磁性材料的存储器件部分;及设置在所说磁性材料附近、用于抑制所说存储器件部分中的高频电流的高频电流抑制器。
2.根据权利要求1的磁随机存取存储器,还包括模制所说存储器件部分和所说高频电流抑制器的模体。
3.根据权利要求1的磁随机存取存储器,其中所说高频电流抑制器包括粒状磁性材料构成的薄膜。
4.根据权利要求3的磁随机存取存储器,其中所说粒状磁性材料具有表示为M-X-Y的组分,其中M是磁性金属元素,Y是选自氧、氮、氟中的一种元素,X是除M和Y之外的元素。
5.根据权利要求4的磁随机存取存储器,其中所说粒状磁性材料的饱和磁化强度相应只包括M的体材料的饱和磁化强度的35%或以上。
6.根据权利要求4的磁随机存取存储器,其中所说粒状磁性材料的电阻约为100μΩ.cm或以上。
全文摘要
在一种具有利用磁性材料的存储器件部分(33,34,35)的磁随机存取存储器中,在磁性材料附近设置高频电流抑制器(26),以抑制存储器件部分中的高频电流。该存储器件和高频电流抑制器一起模制在塑料树脂模体(25)中。高频电流抑制器最好由粒状磁性材料构成的膜膜制成,所说粒状磁性材料具有表示为M-X-Y的组分,其中M是磁性金属元素,Y是选自氧、氮、氟中的一种元素,X是除M和Y之外的元素。
文档编号G11C11/16GK1339800SQ0112574
公开日2002年3月13日 申请日期2001年8月21日 优先权日2000年8月21日
发明者小野裕司, 吉田荣吉, 增本敏昭 申请人:株式会社东金
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1