多叠层光学数据存储介质及其应用的制作方法

文档序号:6752909阅读:246来源:国知局
专利名称:多叠层光学数据存储介质及其应用的制作方法
技术领域
本发明涉及一种多叠层光学数据存储介质,用于在记录过程中使用穿过介质的入射表面的聚焦射束实现可重写的记录,包括基底,其一侧沉积有包括第一相变型记录层的第一记录叠层L0,所述第一记录叠层位于最远离入射表面的位置上,至少一个另外的记录叠层Ln,其包括另一个相变型记录层,且相较于第一记录叠层更靠近入射表面,位于记录叠层之间的透明隔离层,所述透明隔离层的厚度大于聚焦射束的聚焦深度。
本发明还涉及这种光学记录介质在高速应用中的使用。
背景技术
首段中所述类型的光学数据存储介质的一个实施例已经公开于申请人申请的美国专利US6190750中。
基于相变原理的光学数据存储介质是很具有吸引力的,因为它将直接改写(DOW)及高存储密度和与只读光学数据存储系统的易兼容性这几种可能结合了起来。此处,数据存储包括数字视频、数字音频和软件数据存储。相变光学记录涉及使用经过聚焦的功率相对较高的辐射束,例如,聚焦激光束在晶态记录层中形成亚微米大小的非晶态记录标记。在信息记录期间,介质相对于聚焦激光束移动,聚焦激光束依据所要记录的信息进行调制。当高功率激光束熔化了晶态记录层时,就形成了标记。当切断激光束和/或接着相对于记录层进行移动时,在记录层中进行熔化标记的淬火,在记录层的暴露区域中留下了非晶态信息标记,而在未暴露区域中仍然保持晶态。对已写入非晶态标记的擦除是通过再结晶实现的,这种再结晶是通过使用功率电平较低的同一激光进行加热,而并不熔化记录层而实现的。非晶态标记代表数据位,这种数据位可以由相对较低功率的聚焦激光束,例如,经基底进行读取。非晶态标记相对于晶态记录层的反射差异促成了经调制的激光束,这一激光束随后由检测器转换为随所记录的信息变化的调制光电流。
相变光学记录的一个最重要要求是高数据速率,这意味着需要以至少30-50Mbit/s的用户数据速率在介质上写入和重写数据。高密度记录和高数据速率光学记录介质中尤其需要高数据速率,所述光学记录介质可以是例如高速盘形CD-RW、DVD-RW、DVD+RW、DVD-RAM、红光DVR和也被称为蓝光盘(BD)的蓝光DVR,它们分别是已知的光盘和新一代高密度数字通用或视频盘+RW和-RAW以及数字视频记录光学存储盘的缩写,其中,RW和RAM代表这些盘的可重写能力,红光和蓝光代表所使用的激光波长。这种高数据速率需要记录层具有高晶化速度,即,在DOW过程中晶化时间小于30ns。这也适用于上述盘的多叠层版本的记录层。对于DVD+RW,需要33Mbit/s的用户数据位速率,对于红光DVR,所需速率为35Mbit/s,对于蓝光DVR或蓝光DVR的更高速版本,所需速率为50Mbit/s(35ns的CET)或更高。完全擦除时间(CET)定义为用于在晶态环境下完成写入非晶态标记的晶化的擦除脉冲的最短持续时间。通常以静态试验器测量CET。AV信息流确定了对音频/视频(AV)应用的数据速率,但对于计算机数据应用则没有对数据速率作出限制,即越高越好。这些数据位速率中的每一个都被变换为最大CET,所述最大CET受到多个参数的影响,例如记录叠层的热学设计以及所使用的记录层材料。
为了确保先前记录的非晶态标记能够在DOW期间再结晶,记录层必须具有适当的晶化速度,以在DOW期间相对于激光束匹配介质的速度,即记录线速度。如果晶化速度不够高,则代表旧数据的先前记录的非晶态标记将不能在DOW期间完全擦除,所述擦除意味着再结晶。另一方面,当晶化时间较短时,由于晶态背景下的微晶生长是不可避免的,因此,非晶化过程变难。这形成了边缘不规则的相对较小的非晶态标记(低调制),从而引起抖动电平升高。这限制了盘的密度和数据速率。因此,极其期望具有相对较高的记录层冷却速率的叠层。
对光学数据存储介质的另一重要要求是数据存储容量。采用多记录叠层可以增加所述容量。多叠层设计可以由符号Ln表示,其中,n代表0或正整数。本文献中,射束进入的“另一”叠层被称为Ln,而每个更深的叠层分别由Ln-1....L0表示。更深是根据入射射束的方向进行理解的。应当注意,在其它文献中,所述表示法有可能相反,L0代表最接近入射表面的叠层,Ln代表最远离入射表面的叠层。因此,在双叠层设计的情况下,存在两个叠层L0和L1。为了有可能在最深的“第一”叠层(L0)上进行记录,L1需要对射束而言是基本透明的。然而获得具有集合了相对较高的透明度和足够的冷却和记录特性的层的Ln叠层是很难的。在多叠层光学相变记录中,由于另一记录叠层中透明层不具有足够的冷却能力,因此,另一记录叠层难以满足高冷却速率的要求。此外,另一记录叠层的记录层本身也不能太薄,因为这会引起所述记录层的高晶化时间。
美国专利6190750中公开的所述已知介质具有用于可重写的相变记录的|IP2IM2I+|S|IP1IM1|结构,其具有两个金属反射层M1和M2,所述反射层分别或是相对较厚,具有高光学反射性,或是相对较薄,具有相对较高的光学透射性和充足的热导率。I代表介质层,I+代表另一介质层。P1和P2代表相变记录层,S代表透明隔离层。在所述结构中,激光束首先进入包含P2的叠层。金属层不仅用作反射层,而且用作散热层,以确保快速冷却,用于在写入过程中淬火非晶相。P1层紧邻记录过程中基本冷却P1层的相对较厚的金属镜面层M1,而P2紧邻具有有限散热特性的薄金属层M2。正如已经阐释的,记录层的冷却作用在很大程度上决定了记录过程中非晶态标记的正确形成。为了确保记录过程中可以正确形成非晶态标记,需要足够的散热效果。
为了提高L1叠层的透射率,在从US6190750中已知的介质中引入了附加的薄M和I层。化学计量的或复合的Ge-Sb-Te材料,例如Ge2Sb2Te5被用作已知记录介质的记录层,所述已知记录介质是例如DVD-RAM盘。这些化学计量的化合物(图3的区域31)具有成核受控晶化过程。这意味着,标记的成核和随后的生长会引起写入非晶态标记的擦除。当记录层的厚度低于15nm时,所述记录层可以获得相对较高的光透射率。然而,由于这些GeSbTe化合材料的完全擦除时间(CET)在厚度小于等于8nm时大于500ns并在夹在两层薄SiC层之间的情况下所述时间缩短至300ns,因此,L1叠层的记录层的数据率是非常低的。此外,这些数值过高以至于不能接受。对于多记录层应用,期望最接近记录/读取激光束的入射表面的记录层的光透射率相对较高,由此厚度相对较薄,以便可用低CET对下侧记录层进行写入和记录。

发明内容
因此,本发明的目的在于提供一种首段所述种类的可重写的光学存储介质,所述光学存储介质具有与其厚度相对应的光透射率相对较高的另一记录层,其厚度小于12nm,最大CET为35nm,适用于高速记录。所述高速记录应理解为记录线速度至少为12m/s的记录,即聚焦射束相对于光学数据存储介质的速度至少为12m/s的记录。
上述目的是通过根据本发明的光学存储介质实现的,其特征在于另一记录层基本由以原子百分比表示的结构式GexSbyTez所定义的合金构成,其中,0<x<15,50<y<80,10<z<30,并且x+y+z=100,其厚度选自4到12nm,厚度小于5nm的至少一个透明晶化促进层与另一记录层相接触。
这些材料可以被认为是环绕并包括掺杂有Ge的共晶Sb70Te30的区域组成,并具有受生长控制的晶化过程。这意味着,可以通过写入非晶态标记与晶态背景之间的边缘的直接生长实现标记擦除。在所述生长过程结束之前,写入非晶态标记内并不成核。这些材料的CET先随层厚度的增加而快速下降,而后随层厚度的进一步增加而再次上升。最短晶化时间出现在厚度约为10nm的位置处。
在申请人申请的未公开的欧洲专利申请02075496.6(PHNL020099)中,将厚度设定在7到18nm之间,以用于高数据率和高密度光学记录系统,例如DVD+RW、红光DVR和蓝光DVR。这些“共晶”(生长类型)材料最适于单层和双层DVD和也被称为蓝光盘(BD)的DVR的记录系统的高数据率和高密度记录,因为其晶化时间随记录非晶态标记尺寸的降低而减少。“共晶”指的是共晶Sb70Te30,基本是如图3中所示的区域32。为了实现更高的记录密度,极期望采用双层或多层DVD、DVR系统,因为其记录密度可以是双倍或更多倍。在双层DVD/DVR盘的L1叠层中,记录层的厚度应当尽可能薄,最好是大约5nm,以获得高透射率。经过掺杂的“共晶”Sb-Te(生长类型)记录材料的最短CET在约10nm位置处获得。在更薄的层中也需要获得短CET。提出将共晶Ge掺杂的SbTe设计用作记录层,所述记录层与晶化促进层相接触,最好夹在两个晶化促进层之间,所述晶化促进层可以由例如Si、Al和Hf的氮化物、氧化物构成。晶化促进层的使用是为了提高记录层的晶化速度,使厚度约为5nm时的CET约为30ns,记录层组成成分为Ge7Sb76.4Te16.6。也可以改进低CET窗口(参见图2)。
这些“共晶”GeSbTe组合物的晶化时间与厚度的关系可以按如下方式理解CET随相变层厚度的增加而急剧下降是界面材料与整体材料的组成成分之间相互作用的结果。当层相对较薄时,位于界面处的材料的体积分率大,其通常在结构上不同于其整体形式,例如具有更多的缺陷。随着层厚度的增加,整体形式的材料的一小部分也将增加,并当超过某个厚度时,整体形式将支配材料的性质。显然,整体材料比界面材料的生长速度更良好。CET随相变层厚度的增加有可能是由材料的体积的增加引起的。根据权利要求1所述的Ge-Sb-Te层的晶化过程是受生长控制的。要被晶化的材料的体积变得非常重要。微晶的尺寸典型的是10nm。当层变厚时,需要三维生长,自然需要更长的时间。当层变薄时,需要二维生长,从而所需的时间更短。
然而,当记录层变得过薄时,例如只有几nm,界面开始起控制作用,其有可能降低生长速度。界面的改进可以显著提高晶化速度。
透明晶化促进层最好主要包括选自Si、Al和Hf的氮化物、氧化物的材料,更好的是选自Al的氮化物和Si的氮化物的材料。Al和Si的氮化物,例如Si3N4,具有相当好的晶化促进作用。
在根据本发明的光学存储介质的优选实施例中,另一记录层厚度为4到8nm。在所述范围的下端,L1叠层的光透射率可以达到高于50%。
在根据本发明的光学存储介质的另一优选实施例中,合金具有以原子百分比表示的结构式GexSbyTez所定义的组成成分,其中,5<x<8,70<y<80,15<z<20,并且x+y+z=100。现已证明,具有所述范围内的组成成分的记录层在优选厚度10nm下具有低至25ns的良好CET数值。
在另一实施例中,对射束半透明的金属反射层位于另一记录叠层内。所述反射层结合了相对较高的热导率和相对较高的光透射率。热导率有利于非晶态标记形成过程,特别是使用根据本发明的受生长控制的记录层材料时,其更为有益。最好使用Cu,因为相对于例如Ag,其热导率良好并且化学反应性相对较低。高热导率有利于记录叠层的记录层的冷却。
另一记录叠层的记录层和与另一记录层相接触的一个或两个晶化促进层最好夹在另外的介质层之间。例如,记录层与金属反射层之间的介质层的最佳厚度范围在3到30nm之间,最好在4到20nm之间。所述介质层可用于调节记录叠层的光学特性。当所述层相对较薄时,记录层和金属反射层之间的热绝缘下降。结果,记录层的冷却速度提高。介质层的厚度的增加将降低冷却速度。
记录叠层的最靠近入射表面的一侧的另一介质层的最佳厚度范围在50到200nm之间。当第一介质层厚度低于50nm时,叠层的光学特性可受到反向影响。其厚度高于200nm将使层内产生应力,沉积成本增加。
在根据本发明的光学存储介质的特别实施例中,第一记录层具有与另一记录层相同的组成成分。第一记录层可以夹在介质层之间,与另一记录层的介质层设置相同。与第一记录层相接触的晶化促进层可以存在但是任选的。第一记录层的厚度可以高于12nm,因为其不需要具有高光透射率。
介质层可以由ZnS和SiO2的混合物构成,例如(ZnS)80(SiO2)20。可选择的,这些层还可以由例如SiO2、TiO2、ZnS、AlN和Ta2O5构成。第一记录叠层的介质层最好包括碳化物,例如SiC、WC、TaC、ZrC或TiC。这些材料相比于ZnS-SiO2混合物可以提供较高的晶化速度和更好的循环能力。
关于金属反射层,可以使用类似Al、Ti、Au、Ni、Cu、Ag、Cr、Mo、W和Ta的金属及这些金属的合金。
数据存储介质的基底可以至少对激光波长来说是透明的,所述基底可以由例如聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、无定形聚烯烃或玻璃制成。当射束通过基底的入射表面进入到记录叠层时,仅需要基底的透射度。在典型的实施例中,基底是盘形的,并具有120mm的直径和0.1、0.6或1.2mm的厚度。当激光束从基底侧的相对侧入射到叠层时,所述基底可以是不透明的。在后一种情况下,叠层的金属反射层与基底相邻。这也被称为反向叠层。反向叠层可以用在例如DVR盘中。
记录叠层侧的盘形基底的表面最好形成有伺服轨道,所述伺服轨道是可以光学扫描的。所述伺服轨道通常由螺旋形的凹槽构成,在注塑或压模的过程中借助于模具形成在基底上。这些凹槽也可以在复制过程中可选择地形成在间隔层的合成树脂上,所述合成树脂可以是例如UV光固化丙烯酸酯。
可选择的,叠层的最外层借助于保护层相对于环境而屏蔽,所述保护层可以是例如UV光固化聚(甲基)丙烯酸脂。当激光束通过保护层进入记录叠层时,保护层必须具有良好的光学质量,即,基本没有光学像差,并且基本厚度均匀。在这种情况下,保护层对于激光是透明的,其也被称为覆盖层。对于DVR盘来说,所述覆盖层厚度为0.1mm。
可以使用短波长激光例如波长为660nm或波长更短的(红到蓝)激光实现在记录叠层的记录层上记录和擦除数据。
金属反射层和介质层都由蒸镀或溅射形成。
相变记录层可以通过真空淀积形成在基底上。已知的真空淀积过程是蒸发(E光束蒸发、坩埚抗热蒸发)、溅射、低压化学气相淀积(CVD)、离子电镀法、离子流辅助蒸发、等离子体增强的CVD。由于反应温度过高,因此不适用正常的热CVD过程。如此沉积的层是非晶态的,呈现低反射率。为了形成高反射率的适当记录层,这个层必须先完全晶化,这也被通称为初始化。为此,可以将记录层在熔炉中加热到高于Ge-Sb-Te合金的晶化温度例如180℃的温度。PC之类的合成树脂基底可以用功率足够高的专用激光束进行加热。上述过程可以采用例如专用记录器实现,在这种情况下,专用激光束扫描移动的记录层。之后,将非晶态层局部加热到晶化所述层所需的温度,同时使基底不受到不利的热负荷的影响。
可以通过使用短波长激光例如波长为670nm或更短(红到蓝)的激光实现高密度记录和擦除。


借助于示例性的实施例以及参考附图,将对本发明进行详细的阐释,其中图1示出了根据本发明的光学存储介质的示意性截面图;图2示出了具有和没有晶化促进层的由Ge7Sb76.4Te16.6材料构成的L1或L0叠层的记录层的CET(以ns表示)和厚度d(以nm表示)之间的关系。
图3示出了Ge-Sb-Te的三元相图。
具体实施例方式
在图1中,示出了用于可重写记录的多叠层光学数据存储介质20。波长为670nm的聚焦射束19在记录过程中穿过介质20的入射表面16。所述介质具有基底1,所述基底由直径为120mm、厚度为0.6mm的PC构成,其一侧沉积有第一记录叠层2,包括第一相变型记录层6。第一记录叠层2位于最远离入射表面16的位置。包括另一相变型记录层12的另一记录叠层3位于比第一记录叠层更靠近入射表面16的位置。透明隔离层9位于记录叠层2、3之间。透明隔离层9厚度为30μm,可以由本领域已知的通过旋涂而形成的UV固化树脂或包括压敏粘着剂(PSA)层的PMMA或PC之类的塑料片构成。另一记录层12基本上由以原子百分比表示的结构式Ge7Sb76.4Te16.6所定义的合金构成,其厚度为5nm。厚度为2nm的两个透明晶化促进层11’、13’与另一记录层12相接触。透明晶化促进层11’、13’主要包括材料Si3N4。对于射束19半透明的金属反射层14位于另一记录叠层12之内,主要包括元素Cu,其厚度为6nm。
记录和读取借助于激光束19来实现。此外,还存在介质层11和13,所述介质层由(ZnS)80(SiO2)20构成,其厚度分别为5和160nm。记录层12的厚度可在4到20nm之间进行变化。所述变化对CET的影响结果如图2所示。
第一记录层6基本由以原子百分比表示的结构式Ge7Sb76.4Te16.6所定义的合金构成,其厚度为10nm。厚度为2nm的两个可选的透明晶化促进层5’、7’与第一记录层6相接触。透明晶化促进层5’、7’主要包括材料Si3N4。第二金属反射层4位于第一记录叠层3之内,主要包括元素Cu,其厚度为100nm。记录和读取借助于激光束19来实现。此外,介质层5和7由(ZnS)80(SiO2)20构成,分别具有20nm和90nm的厚度。记录层6的厚度在4到20之间变化,所述变化对CET的影响结果如图2所示。
上述图1的介质的L1叠层3的层结构可以概括如下I(160)-N(2)-P(5)-N(2)-I(5)-M(6)-I(80),其中,符号I代表介质层11或13,N代表晶化促进层11’或13’,P代表记录层12,M代表金属层14,而括号之间的数字代表以nm表示的每层厚度。采用上述设计,可以获得L1叠层3的下述光透射率(T)、反射率(R)和反差值Tc=0.352,Ta=0.531,Rc=0.145,Ra=0.028,c和a代表记录层12的相位,即晶相或非晶相。反差值=(Rc-Ra)/Rc=0.807。
在另一实施例中,未示出,L1的结构可以是I(160)-N(2)-P(5)-N(2)-M(6)-I(80)。应当注意,相比于图1,金属层14与晶化促进层11’之间的介质层11被去掉了。由于记录层12和金属层14之间的距离缩小,因此这种层的删除增加了叠层3的冷却效果。层的删除还影响了叠层在光透射率、反射率和反差值上的光学特性。其优点在于所需的层更少,在制造中节省了成本。采用上述设计,可以获得L1叠层3的下述光透射率、反射率和反差值Tc=0.460,Ta=0.624,Rc=0.144,Ra=0.056,反差值=(Rc-Ra)/Rc=0.611。
相变记录层6和12通过对适当目标进行汽相淀积或溅射而形成在基底上。如此沉积下来的层是非晶态的,并在专门的记录器-也称为初始化器中被初始化,即晶化。除隔离层9和覆盖层15的另外的层也通过对适当目标进行汽相淀积或溅射而形成。用于记录、再现和擦除信息的射束19经过透明覆盖层15进入到记录层6或12。透明覆盖层15厚度为0.1mm,由通过旋涂法形成的UV固化树脂构成。覆盖层15还可以通过采用包括压敏粘着剂(PSA)层的塑料片形成。
在图2中,示出了在相变记录层6或12由化合物Ge7Sb76.4Te16.6构成的情况下以ns表示的CET与以nm表示的厚度之间的关系曲线。曲线21代表没有晶化促进层的情况下的关系曲线,曲线22代表记录层6或12夹在两个由Si3N4构成的、厚度为2nm的晶化促进层之间的情况下的关系曲线。从曲线21可以清楚的看出在d=10nm处CET具有最小值。此外,还可以清楚的得知,通过采用晶化促进层,即使记录层6、12的厚度d=4nm,CET也保持在35ns以下。
在图3中,三元相图30具有区域32,所述区域代表“共晶”GexSbyTez(x+y+z=100)材料,所述材料用作DVD+RW、DVR或BD盘之类的记录层,并且所述区域远离区域31中的化学计量的合成物。具有区域32的组成成分的材料被认为是掺杂有Ge的共晶Sb70Te30,其具有受生长控制的晶化过程。这意味着,可以通过写入非晶态标记与晶态背景之间的边缘的直接生长实现标记擦除。在所述生长过程结束之前,写入非晶态标记内并不成核。这些材料的CET先随层厚度的增加而快速下降,而后随层厚度的进一步增加而再次上升,如图2所示。最短晶化时间出现在厚度约为10nm的位置处。这些共晶(生长类型)材料最适于单层和双层DVD和DVR记录系统中的高数据率和高密度记录,因为其晶化时间随记录非晶态标记大小的下降而下降。
应当注意,上述实施方式仅是示意说明,而并不对本发明作出任何限制,本领域技术人员可以在不背离附加的权利要求的范围的情况下设计多种改变的实施方式。在权利要求中,置于括号内的任何附图标记都不构成对权利要求的限制。词语“包括”并不排除权利要求所列举的元件或步骤之外的元件或步骤的存在。元件之前的词语“一个”并不排除多个这种元件的存在。在互不相同的从属权利要求中列举了某些措施这一纯粹事实并不表示这些措施不能组合以实现本发明的优点。
根据本发明,描述了一种多叠层光学数据存储介质,用于在记录过程中使用穿过介质的入射表面的聚焦射束实现可重写的记录。所述介质包括基底,其一侧沉积有包括第一相变型记录层的第一记录叠层L0。所述第一记录叠层位于最远离入射表面的位置上。包括另一个相变型记录层的至少一个另外的记录叠层Ln相较于第一记录叠层更靠近入射表面。透明隔离层位于记录叠层之间。所述另一记录层基本由以原子百分比表示的结构式GexSbyTez所定义的合金构成,其中,0<x<15,50<y<80,10<z<30,并且x+y+z=100,其厚度选自4到12nm,所述另一记录层至少具有一个透明晶化促进层,所述晶化促进层厚度小于5nm,与另一记录层相接触。上述Ln叠层的记录层具有高光透射率和低晶化时间,从而使所述介质适用于记录线速度至少为12m/s的多叠层高速记录。
权利要求
1.一种多叠层光学数据存储介质(20),用于在记录过程中使用穿过介质(20)的入射表面(16)的聚焦射束(19)实现可重写的记录,包括基底(1),其一侧沉积有包括第一相变型记录层(6)的第一记录叠层(2)L0,所述第一记录叠层(2)位于最远离入射表面(16)的位置上,相较于第一记录叠层(2)更靠近入射表面(16)的、包括另一个相变型记录层(12)的至少一个另外的记录叠层(3)Ln,位于记录叠层(2,3)之间的透明隔离层(9),所述透明隔离层(9)的厚度大于聚焦激光束(19)的聚焦深度,其特征在于,所述另一记录层(12)基本由以原子百分比表示的结构式GexSbyTez所定义的合金构成,其中,0<x<15,50<y<80,10<z<30,并且x+y+z=100,其厚度选自4到12nm,厚度小于5nm的至少一个透明晶化促进层(11’,13’)与另一记录层(12)相接触。
2.根据权利要求1所述的光学存储介质(20),其中,透明晶化促进层(11’,13’)主要包括的材料选自由Si、Al和Hf的氮化物、氧化物构成的组。
3.根据权利要求2所述的光学存储介质(20),其中,透明晶化促进层(11’,13’)主要包括的材料选自由Al的氮化物和Si的氮化物构成的组。
4.根据权利要求2所述的光学存储介质(20),其中,另一记录层(12)的厚度选自4到8nm的范围。
5.根据权利要求1所述的光学存储介质(20),其中,所述合金具有以原子百分比表示的结构式GexSbyTez所定义的组成成分,其中,5<x<8,70<y<80,15<z<20,并且x+y+z=100。
6.根据权利要求1中任一项所述的光学存储介质(20),其中,对射束(19)半透明的金属反射层(14)位于另一记录叠层(3)内。
7.根据权利要求6所述的光学存储介质(20),其中,金属反射层(14)主要包括元素Cu。
8.一种根据上述权利要求中任一项所述的光学存储介质(20)的用途,用于记录速度高于12m/s的高速记录。
全文摘要
本发明描述了一种多叠层光学数据存储介质(20),用于在记录过程中使用穿过介质(20)的入射表面(16)的聚焦射束(19)实现可重写的记录。所述介质(20)包括基底(1),其一侧沉积有包括第一相变型记录层(6)的第一记录叠层(2)L
文档编号G11B7/24067GK1669080SQ03816639
公开日2005年9月14日 申请日期2003年6月20日 优先权日2002年7月15日
发明者G·周 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1