多配置处理器-存储设备的制作方法

文档序号:6752914阅读:184来源:国知局
专利名称:多配置处理器-存储设备的制作方法
技术领域
本文的领域涉及电子集成电路。更具体地,本文涉及印刷电路板设备。本文涉及多配置处理器存储基板设备。
背景技术
数字计算机系统今天被用于执行广范围的任务。商业、工业、政府、教育、娱乐的很多不同领域,以及最近地家庭正在进入为今天日益强大的计算机设备开发的庞大的和快速增长的应用列表。
现代计算机系统通常以强大的数字处理器集成电路设备为特征。所述处理器用于执行软件指令以实施复杂的功能,例如,3-D图像应用,语音识别,数据可视化等。很多这些应用的性能直接从更强大,能力更强的处理器受益。另外,强大的现代计算机系统已经降低了成本以使它们对普通用户而言比以前更能获得。
现代计算机系统的增长的能力以及它们降低的成本的主要特征是集成电路设备制造技术的平稳进展。现代半导体制造技术导致集成水平的增加,增加的能力,以及所述计算机设备的降低的成本(例如便携式计算机系统,桌面计算机系统,工作站,服务器等)。
计算机系统设备制造商已经发现紧凑的尺寸是期望的市场特性。典型地,设备越紧凑,其制造成本越低。另外,紧凑的尺寸(例如增加的集成)产生许多其他益处,例如降低的功率消耗以及增加的便携性。因此,很多计算机系统设备制造商的主要目标是降低给出设备的形状因素,同时保持或者甚至增加该设备的性能。
降低计算机系统设备的形状因素的目标已经导致几个现有技术集成的电路封装方案。一现有技术封装方案涉及多芯片模块的实施。多芯片模块,或MCM是指包括与高密度线,或在该封装中或该封装上嵌入的信号迹线紧密连接的两个或者多个“原始的”芯片的芯片封装。原始的芯片通常是指没有相关封装的半导体集成电路片。该原始的芯片被典型地直接安装在一基底上或嵌入其中。一现有技术MCM实施节省空间并且在某些情况下由于芯片之间的短导线(例如与常规地安装在印刷电路板上的几个不连续的芯片相比)从而能加速处理。陶瓷的基底被典型地与芯片线接合在一起使用(MCM-C),或者与沉积的薄膜互连一起使用(MCM-D)。MCM已经被安装在硅基板(MCM-S)以及基于树脂的层积的印刷电路板(MCM-L)上,所述后者,低成本的版本演化成多芯片封装(MCP)。
另一现有技术封装方案涉及多芯片封装的实施。多芯片封装,或MCP是指一芯片封装包括两个或者多个封装的芯片,所述封装的芯片是与原始的芯片相对而言的。重要的是MCM使用层积的,印刷电路板类的基板(MCM-L)而不是陶瓷(MCM-C)。
但是,上面的现有技术封装实施有许多问题。使用MCM和MCP很难路由信号迹线通过所述基底或者所述基板。例如,现代处理器集成电路片可以有500或更多个需要耦合或者路由通过所述基板的互连。在具有许多这样的片的MCM或者MCP中,布线问题可能是重要的。
从施加到所述基板的设计的增加的复杂性出现了其他的问题。所述路由问题导致基板的设计更加复杂。例如,要路由几千个不同的迹线,很多基板被实施在多个层中并且以紧密分组的方式实施信号迹线,其能够反过来导致另一组问题(例如串扰,不均匀的路径延迟等)。另外,高度复杂的基板难以制造。例如,安装多个芯片的高性能MCM具有很紧密的制造公差。所述紧密的公差减少了MCM的产出和可靠性。这增加了作为结果的计算机系统设备的成本。另一个增加成本的因素是原始芯片的使用。所述原始的芯片必须典型地安装在所述基板上并且所述设备必须在测试之前完成。因此,在设备完成之前难以检测有缺陷的片。这就减少了设备制作处理的整体产出。
现有技术MCM和MCP封装实施的另一问题是该事实即对于紧凑封装的MCM/MCP设备,很难管理热量耗散。更难以从所述多个芯片去除热量。另外,该设备可能会热不平衡,其中热量能够从“热”部件传播到“冷”部件,影响它们的性能和可靠性。另外,设备的基板和陶瓷基底不是很好的热导体。结果,现有技术MCM/MCP设备可能需要复杂的热沉设备以保持高性能等级。大多数废热需要传送到周围的空气中(例如需要热管道,高气流,噪音风扇等)。随着部件封装密度增加以及时钟速度增加,必须被消散的热能也增加。为了保持高性能,必须保持一个稳定的操作温度。因此,高性能现有技术MCM/MCP设备必须被配置与精细的热消散设备(例如热沉风扇,液体冷却,散热器等)一起使用。这增加了整体封装的尺寸并且能够抵消使用MCM/MCP设计的主要益处。
因此,所需要的是一个解决方案,其有效地封装多个集成电路部件同时保持节省成本的封装规格。所需要的是一个解决方案,其证明有助于产出和性能的特征,并且具有小的封装占地面积。

发明内容
本发明的实施方式提供了多配置的处理器-存储设备,其具有用于耦合到印刷电路板的一标准化的接口。本发明的实施方式提供了一解决方案,其有效地封装多个集成电路部件同时保持节省成本的封装规格。另外,本发明的实施方式提供了有助于产出和性能的特征,并且具有小的封装占地面积。
在一实施方式中,本发明被实施为多配置的处理器-存储设备,用于耦合到印刷电路板的PCB接口。该设备包括一基板,支持多个存储部件的配置,以及一个处理器,其具有与印刷电路板的一接口区连接的单个的共用接口。(例如,在一实施方式中,设置在所述印刷电路板表面上的焊盘阵列)。在第一配置中,所述基板支持一处理器和第一数目的存储部件。在第二配置中,所述基板支持处理器和一附加数目的存储部件(例如四个或者更多的存储芯片)。所述存储部件可以被预先测试,封装的存储部件安装在所述基板上。所述处理器可以是一表面安装(或线接合的)处理器片。另外,所述处理器可以倒装芯片(flip chip)配置被安装在一中,面相对于(side-opposite)该存储部件。在第一配置(处理器和存储部件在所述基板的同侧)中,一散热器可以安装在存储部件和处理器上以耗散热量。在第二个倒装芯片配置中(处理器和存储部件在所述基板的相对侧),所述处理器面可以被焊接到所述印刷电路板的PCB接口的非电功能区以耗散热量,并且在相对侧散热器将简单地只为所述存储部件耗散热量。
在一实施方式中,取决于特定的配置,所述处理器可以是一GPU(图形处理单元)并且该存储部件可以是DDR(双数据速率)存储部件。该GPU可以是安装在所述基板上的一裸片,同时所述存储部件被预测试,封装的存储部件被安装在所述基板上。
在另一实施方式中,多配置处理器-存储设备包括一散热器,其耦合到存储部件以独立于来自GPU的热量从所述存储部件传导热量。所述GPU以倒装芯片配置安装在基板上,在所述基板的与所述存储部件相对的一侧。在此实施方式中,所述GPU包括一个热传导表面,其被配置用于附着到一热沉,其中所述热沉被配置以通过印刷电路板的开口突出,并且传导热量从所述GPU通过所述开口到所述印刷电路板的与所述GPU设备相对的一侧,从而为所述GPU提供鲁棒的热传导路径,其独立于所述存储部件的散热器。
在此方式中,本发明的实施方式实施了一具有紧凑尺寸和小的形状因素的处理器-存储设备,导致更低的制造成本和更小的应用占地面积。由于来自所述存储部件和所述处理器的热耗散被解耦合,因而高性能可以被保持,从而允许更高的时钟速度和更均衡的热量耗散。另外,预测试的,预封装的存储部件的使用增加了所述设备制造过程的产出。


本发明通过并非用于限制的附图中的例子来说明,附图中相同的参考数字指示相同的元件,并且其中图1是表示根据本发明的一实施例的处理器-存储设备的第一配置和第二配置。
图2是表示根据本发明的一实施例的多配置处理器-存储设备的第一配置(配置A)和第二配置(配置B)的侧视图。
图3A是表示根据本发明的一实施例的配置B的基板相关于PCB(印刷电路板)的共用PCB接口的侧视图。
图3B是表示根据本发明的一实施例的共用PCB接口的顶部向下视图。
图4是表示根据本发明的一实施例的在基板和共用PCB接口之间的焊接互连的特写侧视图。
图5A是表示根据本发明的一实施例的在基板,倒装芯片安装的处理器,以及共用PCB接口之间的焊接交互的第一侧视图。
图5B是表示根据本发明的一实施例的多个焊料膏沉积物与多个焊料球之间的关系的PCB的第二侧视图。
图6是表示一可选实施例的侧视图,其中所述焊料球被用于电互连,并且其中粘着层用于将所述处理器附着到所述共用PCB接口的非功能区。
图7是表示根据本发明的一实施例的以类似网格的型式设置的共用PCB接口的非功能区的焊盘。
图8是表示根据本发明的一实施例的在所述非功能区的表面上的所述网格的侧视图。
图9是表示根据本发明的一实施例的在所述非功能区的表面上的焊料球和网格的侧视图。
图10是表示根据本发明的一可选实施例的处理器-存储设备实施,其中所述处理器-存储设备的倒装芯片配置被安装到一热沉,其被设计以通过PCB内的开口附着到所述处理器。
具体实施例方式
下面详细描述本发明的优选实施例,并结合附图对实施例进行说明。尽管本发明是结合该优选实施例描述的,但是要理解本发明并不限于这些优选实施例。相反,本发明的意图在于覆盖替代、修正和等价物,其有可能被包括在附加的权利要求所限定的本发明的精神和范围内。此外,在以下对本发明的实施例的详细描述中,很多具体细节被阐述以提供对本发明的彻底理解。然而,一该领域的普通技术人员能够知道本发明可以在没有这些具体细节的情况下实施。在另一个例子中,众所周知的方法、程序,部件和电路没有被详细描述,以避免不必要地使本发明的实施例的方面变模糊。
本发明的实施例提供了一个多配置处理器-存储设备,其具有耦合到印刷电路板的标准化的接口。本发明的实施例提供了一个解决方案,其有效地封装多个集成电路部件,同时保持了节省成本的封装规格。另外,本发明的实施例提供了有助于产出和性能的特性,同时具有小的封装占地面积。
图1是根据本发明一个实施例中的处理器-存储设备的第一配置和第二配置。如图1所示,所述第一配置,配置A,包括一个处理器130和多个安装在基板110上的存储部件121-124。第二配置,配置B,包括一个处理器150和安装在基板120上的多个存储部件141-142。配置A和配置B都被设计安装在一个共用的PCB的接口160上。
仍然参考图1,本发明的实施例被设计用一个可配置的基板,该基板适于支持处理器和存储部件的多种组合安装配置,同时,仍然保持一个例如,到印刷电路板(例如,母板等)接口区的共用接口。如图1所示,配置A有4个存储部件121-124和一个单独的处理器130。配置B有2个存储部件141-142和一个单个的处理器150。两个配置都利用一个共用的基板接口,该接口被设计耦合到共用PCB接口160。值得注意的是,实施例可以被配置以支持存储部件和处理器的其他组合(例如,一个处理器和一个存储部件,八个存储部件,16个存储部件等)。
在一个实施例中,存储部件121-124和141-142是预封装的存储部件。如这里所使用的,预封装的存储部件是指不是裸露片或原始的芯片的存储部件。该存储部件以传统方式封装,并在安装在基板110或基板120上之前被测试。预封装的预测试的存储部件的使用与利用原始的芯片的现有技术的MCM或MCP设备相比,增加了整体设备制作过程的产出。另外,使用预封装的存储部件简化了它们的获得过程。例如,预封装的存储部件能从大量的供应商处购买,提供在价格和/或质量方面的更好的灵活性。
在如图1所示的配置A和B实施例中,存储部件被表面安装在基板110或120上。在配置B中,处理器150与存储部件一起被表面安装在基板120上。在配置A中,处理器130以倒装芯片配置安装在基板110上,如表示处理器130的轮廓的虚线所示。
在一个实施例中,处理器130和140是GPU(图形处理器单元),在其它实施例中,处理器130和140是其它类型的处理器,如,DSP(数字信号处理器),CPU(中央处理单元)等。类似地,在一个实施例中,存储部件121-124和141-142是DDR存储部件。在另一个实施例中,存储部件121-124和141-142是其它类型的存储部件,如,RDRAM存储部件,SDRAM存储部件等。
图2表示根据本发明一个实施例的多配置处理器-存储设备的配置A和B的侧视图。如图2所示,在配置B中,处理器150被表面安装在基板120的上同侧。在配置A中,处理器130以倒装芯片配置安装在基板110上。在配置A中,存储部件121-124被表面安装在所述基板上,同时处理器130被倒装芯片安装在基板的与存储部件相对的侧面上。
在配置A中,处理器130倒装芯片安装提供了增加的部件密度以及更小的形状因素。通过将处理器130倒装芯片安装在与存储部件相对的侧面,附加数目的存储部件可以被包括在相同的形状因素内。类似地,对于给定数目的部件,具有更小应用占地面积的更小的形状因素可以实施。所述更小的形状因素以及增加的部件密度导致减少的制造成本。另外,所述处理器130的倒装芯片配置简化了用于所述基板的信号迹线路由实施。
配置A中的处理器130的倒装芯片(flip-chip)安装允许处理器130独立于存储部件121-124而冷却。例如,存储部件121-124可以被耦合到它们各自的散热器或热沉。基板110的对侧上的处理器130能利用其自身的热耗散机制。更详细的特征的描述在下面图5A中。
图3A所示为配置B的基板120相对于PCB(印刷电路板)170的共用PCB接口160的侧视图。如上所述,该实施例的处理器-存储设备的两个配置包括一个接口,其被设计为耦合到共用PCB接口160。该共用PCB接口160通过提供电互连到PCB 170起作用。基板120的接口和共用PCB接口160之间的附着典型地使用焊料来实施。该共用PCB接口可以包括一个焊盘阵列,用于接受与基板120的焊料互连。
需要注意的是,在该实施例中,该共用PCB接口160被显示为通常与PCB 170的表面齐平或与PCB 170的表面具有相同的高度。在另一实施例中,该共用PCB接口160可以与PCB 170的表面具有不同的高度,例如,略微高于PCB 170的表面,如下面的图5A和图6所示。
图3B所示为根据本发明一个实施例的共用PCB接口160的俯视图。如图3B所示,该共用PCB接口160包括一个焊盘阵列,用于接受处理器-存储设备的多个焊料互连(例如,几百个互连)。在该实施例中,该共用PCB接口160包括一个非功能区165,其位于焊盘阵列的中心。非功能区165指的是这样一个事实在该区没有焊盘互连,其为有源的或被PCB 170上的部件所使用。
图4所示为根据本发明的一个实施例基板120和PCB 170的共用PCB接口160之间的焊料互连的近侧视图。如本领域的技术人员所知的,多个焊料互连401(例如,焊料球401)被用于耦合基板120的接口至共用PCB接口160的焊盘。一旦焊料互连,就保持基板120和共用PCB接口160之间的离散距离410。在一个典型的实施中,距离410为大约500微米。该距离足以容纳倒装芯片安装的处理器配置,如下面图5A所示。
图5A所示为根据本发明的一个实施例基板110、倒装芯片安装的处理器130以及共用PCB接口160之间的焊料相互作用的侧视图。图5A示出处理器-存储设备的配置A实施例的焊料互连。
在该实施例中,该多个焊料球401被用于以上述图4中所描述的基板120和共用PCB接口160之间的连接相似的方式将基板110的接口连接至共用PCB接口160。然而,除了实现该接口和共用PCB接口160之间的电互连的焊料球401之外,焊料膏沉积(例如,下面图5B中更详细描述的)也将处理器130的表面附着到共用PCB接口160的非功能区165。在该实施例中,处理器130的表面被直接焊接至非功能区165,以提供热传导路径,由此使热能从处理器130直接传导出进入共用PCB接口160和PCB 170。
通过这种方式,处理器130的表面被配置成到印刷电路板的PCB接口160的附着,以便热通过该附着从处理器传导热。该距离410(例如,大约500微米)为倒装芯片安装的处理器130在基板110的接口和PCB接口160之间提供足足够的空间,因为处理器典型地从基板110的表面伸出大约350微米。
图5A所示的焊料附着允许回流焊料膏从处理器130将大部分热直接传导至PCB 170。这为处理器130提供了一条独立于存储部件的热传导路径。该独立的热传导路径将存储部件于允许单独的热耗散路径的处理器进行热去耦。因此导致了在所有被安装的集成电路设备中的更均匀受控低结温度。此外,PCB接口160被示于图5A和图6中,与图3A中所述的齐平、共面配置相比,其略微高于PCB 170的表面。
图5B所示为PCB 170的侧视图,其示出根据本发明的一个实施例多个焊料膏沉积502与焊料球401之间的关系。在图5B所述的实施例中,焊料膏沉积502被用于实现到处理器130的附着。回流时,图5A所示的焊料附着从焊料膏沉积502被生成。在一个实施例中,焊料球401典型地为标准尺寸.63mm的焊料球。图5B的实施例还示出被嵌入在PCB 501中的多个热通道501,以将热从该附着传导至处理器130中。
图6所示为一个可选实施例的侧视图,其中焊料球401被用于电互连且其中粘着层601被用于粘着处理器130至共用PCB接口160的非功能区165。图6所述的实施例基本上与图5A所示的实施例相似,除了热粘着层601被用于附着处理器130的表面且因此实现热传导路径之外,这与焊料相对。根据图5A所示的实施例,热粘着层601为处理器130提供独立的热传导路径。
图7、图8和图9更详细地示出根据本发明一个实施例的共用PCB接口160的非功能区165的视图。如图7所述,非功能区165的焊盘以网格形式被安置。在该实施例中,网格被实施为防止用于连接处理器130的表面的焊料球401扩散并可能从处理器401的表面分离。
参考图8,其示出非功能区165的表面上的网格的侧视图。图8还示出处理器130的表面131,其被配置为附着到非功能区165。在一个实施例中,表面131是一个金属化的表面(例如,铜等),或热传导表面,其适合有利于从处理器130的热传导。可选地,表面131可以是裸片表面。
参考图9,其示出焊料球401和非功能区165的表面上的网格的侧视图。如上所述,网格被实施为防止焊料球401扩散并可能从处理器130的表面131分离。网格的“脊”从区165的表面向上延伸大约20至30微米。
在一个实施例中,网格使用“焊料屏蔽”(solder-mask)材料被实施。该焊料屏蔽材料在与其他焊料屏蔽特征被实施在PCB 170的表面上相同的制造步骤过程中,可以被应用于非功能区165的表面,且因此实施网格图案。包括网格的材料可以是聚合物材料,如典型的SMOBC(soldermask over bare copper,裸铜上的焊料屏蔽)中所使用的。可选地,在另一实施例中,网格可以通过刻蚀非功能区165的表面(例如,铜)而得以实施。
图10示出根据本发明的一个可选实施例的处理器-存储设备。在该实施例中,处理器-存储设备的倒装芯片配置(例如,配置A)通过PCB1070中的开口(例如,孔)被安装到被设计为附着到处理器130的热沉1025。
在该实施例中,多配置处理器-存储设备包括被耦合至存储部件的散热器1020,以从热独立于处理器130的存储部件传导热。处理器130以倒装芯片配置被安装在基板上,位于相对存储部件的基板一侧上。在该实施例中,处理器130包括被配置用于附着到热沉1025的导热表面。热沉1025被配置为通过1070的开口伸出并通过该开口将热从处理器130传导到PCB 1070相对于处理器130设备的一侧,由此以一种独立于存储部件(其使用散热器1020)的方式从处理器130传导出热。处理器的表面被安装到热沉1025,与共用PCB接口160的非功能区165相对。共用PCB接口160的电互连将沿PCB 1070内的开口的周边被安置。
该实施例提供被耦合至处理器130的一个非常鲁棒的热传递设备(例如,热沉1025)的优点。这允许处理器产生比相反的可能较大量的热,因此允许产生较高的时钟速度、较高的性能等。热沉1025可以自选地包括一个扇,以增加气流,由此耗散来自处理器130的更大量的热。
因此,本发明的实施例提供具有用于耦合至印刷电路板的标准化接口的多配置处理器-存储设备。本发明的实施例提供一个有效封装多个集成电路部件同时维持节省成本封装规范的方案。此外,本发明的实施例提供令人满意的产出和性能特征以及小的封装面积。由于从存储部件的热耗散且处理器被去耦,高性能可以被维持,这允许较高的时钟速度和较均匀的热耗散。此外,预测试预封装存储部件的使用增加设备制造工艺的产出。
广义上讲,这种写法描述了一种用于耦合至PCB(印刷电路板)接口的多配置处理器-存储设备。该设备包括基板,其支持存储部件的多个配置;以及处理器,同时具有一个单一的、与印刷电路板的PCB接口的共用接口。在第一配置中,该基板支持一个处理器和第一数目的存储部件。在第二配置中,该基板支持一个处理器和附加数目的存储部件。存储部件可以是被安装到基板上的预测试的、封装的存储部件。处理器可以是表面安装的处理器片。此外,处理器可以倒装芯片配置被安装,面相对于存储部件。在第一配置中,散热器可以被安装在存储部件和处理器上以耗散热。在第二配置中,倒装芯片、配置、处理器面可以被焊接到印刷电路板的PCB接口的非电功能区上以耗散热。
出于解说和描述的目的,上面给出本发明的特定实施例的描述。它们不应被认为是穷尽的或将本发明限制在公开的精确形式,而且显然根据上述教义可能做出修改和变化。实施例被选择且被描述以最好地解释发明的原理及其实际应用,因此允许本领域的其他技术人员能最好地使用本发明和具有各种修改的各种实施例,如同被编成序列的所构想的特定用途。预想本发明的范围有后附的权利要求及其等同来限定。
权利要求
1.一种多配置处理器-存储设备,用于耦合至印刷电路板的PCB(印刷电路板)接口,包括基板,其具有第一配置和第二配置,其中所述基板被配置成在第一配置中安装一个处理器和第一数目的存储部件,以及在第二配置中安装所述处理器和一个附加数目的存储部件;以及接口,其被构建于基板中,用于耦合至印刷电路板的PCB接口。
2.权利要求1的设备,其中存储部件和处理器被表面安装在基板上。
3.权利要求1的设备,其中处理器以倒装芯片配置被安装在基板上。
4.权利要求3的设备,其中处理器以倒装芯片配置被安装在基板上,位于安装有存储部件的基板的一相对侧上。
5.权利要求1的设备,其中处理器为GPU(图形处理器单元)。
6.权利要求1的设备,其中存储部件为DDR(双数据速率)存储部件。
7.权利要求6的设备,其中存储部件为经封装的存储部件。
8.权利要求1的设备,其中处理器以倒装芯片配置被安装在基板的接口同侧上。
9.权利要求8的设备,其中处理器的表面被配置成到印刷电路板的PCB接口的一个区的附着,以通过该附着从处理器传导热。
10.权利要求9的设备,其中所述附着为焊料附着。
11.权利要求9的设备,其中所述附着为粘着附着。
12.权利要求1的设备,其中存储部件被配置为容纳散热器,以从存储部件传导热。
13.权利要求1的设备,其中第一配置的第一数目的存储部件为两个存储部件,且第二配置的第二数目的存储部件为至少四个存储部件。
14.一种用于耦合至印刷电路板的多配置GPU(图形处理器单元)设备,包括基板,其具有第一配置和第二配置,其中所述基板被配置成在第一配置中安装一个GPU和第一数目的存储部件,以及在第二配置中安装所述GPU和一个附加数目的存储部件;以及共用接口,其被构建于基板中,用于耦合至印刷电路板的PCB接口,其中所述共用接口被配置成为第一配置和第二配置提供到PCB接口的标准化互连。
15.权利要求14的设备,其中该设备为用于耦合至印刷电路板的PCB(印刷电路板)接口的封装。
16.权利要求15的设备,其中GPU以倒装芯片配置被安装在基板上,位于基板相对存储部件的一侧上,且其中GPU包括热传导表面,其被配置成到印刷电路板的PCB接口的附着,用于通过该附着从GPU传导热。
17.权利要求16的设备,其中GPU被安装在与共用接口的焊料球平面共面的基板上,以实现到印刷电路板的PCB接口的附着。
18.权利要求16的设备,其中所述附着通过使用焊料来实现。
19.权利要求16的设备,其中所述附着通过使用粘着物来实现。
20.权利要求16的设备,其中所述存储部件是经封装的DDR(双数据速率)存储部件。
21.权利要求16的设备,其中所述存储部件被配置以容纳一散热器以从所述存储部件传导热。
22.权利要求16的设备,其中所述插座包括一非电功能区,用于实施到所述GPU的热传导表面的附着,并且其中所述非功能区上设置有一网格,用于接受多个焊料球以实施所述附着。
23.权利要求22的设备,其中所述网格包括使用SMOBC(裸铜上的焊料屏蔽)工艺沉积的焊料屏蔽。
24.权利要求22的设备,其中所述网格包括使用刻蚀工艺形成的金属材料。
25.权利要求14的设备,其中构建于基板中的共用接口用于耦合到印刷电路板的PCB(印刷电路板)接口,所述设备还包括耦合到所述存储部件的散热器,用于独立于来自所述GPU的热传导来自存储部件的热量。
26.权利要求25的设备,其中所述GPU以倒装芯片配置被安装在基板上,位于与基板相对存储部件的一侧上,并且其中GPU包括热传导表面,其被配置用于附着到热沉,其中所述热沉被配置以通过所述印刷电路板的开口突出,并且通过所述开口将热从所述GPU传导到所述印刷电路板相对所述GPU设备的一侧。
27.权利要求15或25的设备,其中所述存储部件为表面安装在所述基板上。
28.权利要求1或25的设备,其中所述存储部件是经封装的DDR(双数据速率)存储部件。
全文摘要
一种多配置处理器-存储设备,用于耦合到一个PCB(印刷电路板)接口。所述设备封装括一基板,支持多个存储部件的配置,以及一个处理器,其具有与印刷电路板的PCB接口的单个的共用接口。在第一配置中,所述基板支持处理器和第一数目的存储部件。在第二配置中,所述基板支持处理器和一附加数目的存储部件。
文档编号G11C5/00GK1669141SQ03817043
公开日2005年9月14日 申请日期2003年7月15日 优先权日2002年7月16日
发明者贝达德·贾法里, 乔治·索伦森 申请人:尼韦迪亚公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1