垂直磁记录介质和利用其的磁存储装置的制作方法

文档序号:6770219阅读:140来源:国知局

专利名称::垂直磁记录介质和利用其的磁存储装置的制作方法
技术领域
:本发明涉及一种可记录大量信息的垂直磁记录介质以及利用其的磁存储装置。
背景技术
:近年来,因为计算机所处理的信息量己增大,因此强烈需要增大作为辅助存储装置的硬盘驱动器的容量。此外,硬盘驱动器已装配到家电产品中,并且对縮小硬盘驱动器的规模并且增大容量的需要变得甚至更强。在常规地用于硬盘驱动器的纵向磁记录系统中,因为记录在介质中的磁化彼此相邻并且在相反方向上相面对,因此为了提高线性记录密度,不但必需要增大记录层的矫顽磁力而且还要降低薄膜厚度。然而,出现了随着记录层的矫顽磁力增大而使写入头的写入能力变得不足这样的问题,并且出现了随着记录层的厚度降低了而会由热搅动丢失记录信息这样的问题;由此,难于利用纵向磁记录系统来提高面记录密度。为了解决这些问题,积极开发了利用垂直磁记录系统的硬盘驱动器。垂直磁记录系统是这样的方法,即通过该方法可形成如此的记录位以至于记录介质的磁化与介质面相垂直并且相邻记录位中的磁化是反平行的,由此可降低介质噪声,因为与纵向磁记录系统相比磁性转变区域中的退磁场小并且在高密度记录期间可稳定地保持记录磁化。此外,己提议了这样一种方法,在该方法中使包括有下述软磁性底层的偶层垂直磁记录介质与单磁极型头(所谓的SPT头)相结合,所述软磁性底层用作垂直磁记录介质与衬底之间的磁通回归路径。进一步提议了这样一种磁头(所谓的TS头),在该磁头中通过位于主磁极的尾部侧的非磁性间隙层来提供磁屏蔽以便提高写入场梯度。已提议了这样一种垂直磁记录介质的磁记录层的结构,即在该结构中通过对诸如磁性颗粒(所谓的粒状结构)周围的氧化物和氮化物这样的非磁性化合物进行偏析(segregate)来对磁性颗粒进行磁性去耦。例如,"RoleofOxygenIncorporationinCo-Cr-Pt-Si-0PerpendicularMagneticRecordingMeida"公开了用于通过利用包含有CoCrPt合金和Si02的复合靶并且通过在氩-氧混合气体气氛中利用DC磁控溅射技术来形成具有粒状结构的记录层的方法。作为用于降低介质的噪声并且提高SNR的方式,JP2006-302426A公开了具有包括Co、Ce、Pt、Si和O的粒状结构的磁记录层、实际上在薄膜厚度方向上恒定的磁性颗粒尺寸和与中间层相接的界面侧包含比表面层更多氧的区域。JP2004-25943A公开了记录层是由具有不同氧化物含量的两个或更多磁性层形成的,通过使磁性层的氧化物含量在最靠近衬底的侧最大而使记录层的最低层中的晶粒微小,并且使磁性层层压在其上,其中晶粒大于最低层的晶粒。JP2004-310910A公开了使不包括氧化物的Co-Cr合金层层压在下述记录层上,该记录层具有使氧化物偏析到晶界的粒状结构。另外,JP2006-309919A公开了磁性层是由具有粒状结构的两个或更多层形成的并且下部磁性层具有比上部磁性层更大的非磁性以及更不混溶的原子浓度这样的技术。JP2006-302426A[专利文献2]JP2004-25943A[专利文献3]JP2004-310910A[专利文献4]JP2006-309919AIEEE磁学会议文集(TransactiononMagnetics),第40巻、第4期、2004年7月、第2498-2500页
发明内容上述现有技术的目的是通过使非磁性氧化物偏析到晶界以便使磁性颗粒磁分离、使颗粒尺寸较小、并且改善磁性层的初始层来提高磁特性和记录性能。然而,如非专利文献1中所描述的,虽然仅仅通过均匀地增大磁性层中的氧含量并且使Cr氧化物偏析到晶界来降低平均磁团簇(magneticcluster)尺寸(晶粒间交换耦合),但是存在由于开关场分布增大而使分辨率降低、写入能力随矫顽磁力的增大而降低及记录变难这样的问题。根据JP2006-302426A和JP2004-25943A,当通过利用具有下述高Si02浓度和低Cr浓度的靶而形成磁性层的初始层时,所述高Si02浓度对于氧化物形成而言具有高自由能,平均晶粒尺寸降低了。然而,晶界不是均匀地扩展;形成了具有窄晶界的许多亚颗粒、并且在交换耦合中产生了分散(dispersicm),这导致即使晶粒尺寸较小磁团簇尺寸也未变得较小,因此会出现进一步提高面记录密度则变得很难这样的问题。此外,由于少量Cr而使部分分离的磁性颗粒的磁各向异性变得很大,因此会出现无法充分地执行通过头进行记录这样的问题。此外,如果仅将铁磁性金属层层压在具有如JP2004-310910A和JP2006-309919A中所描述的粒状结构的磁性层上,那么必需增大铁磁性金属层的厚度,以便利用增强粒状磁性层的偏析并且降低交换耦合而获得足够的OW特性。结果,存在由于分辨率很大的降低而使SNR的提高饱和这样的权衡关系。本发明人注意力集中在铁磁性金属层中的生长初期阶段的结构并且通过利用TEM来详细地研究晶体结构。结果,本发明人发现当粒状磁性层的晶界宽度变大时,铁磁性金属层具有反映出下述阶段的颗粒层的晶界结构的晶界,在所述阶段它很薄并且具有连续结构的铁磁性金属层的薄膜厚度变厚,并且发明人发现因为当铁磁性金属层很薄时它具有不连续结构,因此无法将均匀的交换耦合引入到粒状磁性层的晶粒中,以便可获得开关场分布既不会降低也不会影响降低开关场强度的效果。此外,最新发现了这样的问题,即因为与颗粒薄膜相比铁磁性金属薄膜在薄膜中具有极强的交换耦合,因此虽然开关场分布随着薄膜厚度的增大而减少,但磁团簇尺寸快速增大,因此噪声在高线性记录密度快速增大并且当将信号记录在磁道(相邻磁道擦除)中时相邻磁道的误码率快速地降低。本发明是根据这种讨论来执行的,并且目的是提供一种垂直磁记录介质、其制造方法和磁存储装置,其中磁性层的初始层中的交换耦合降低了、抑制了平均开关场强度和开关场分布、兼顾了介质的低噪声和高分辨率、并且由于优异的S/N而使相邻磁道擦除很小。本发明的垂直磁记录介质包括底层,该底层位于衬底上;磁性层,该磁性层形成于底层上,其中该磁性层具有主要是由Co、Cr和Pt所组成的圆柱形磁性颗粒和氧化物;以及铁磁性金属层,该铁磁性金属层形成于磁性层上并且不包含氧化物,其中磁性层包括至少两个层,这两个层即是位于底层侧的第一磁性层以及位于铁磁性金属层侧的第二磁性层,第一磁性层的晶界是由Cr氧化物以及从Si、Ti、Nb和Ta中选择出来的至少一种氧化物组成的,第二磁性层的晶界包括从Si、Ti、Nb和Ta中选择出来的至少一种氧化物,并且包含在Cr氧化物之中的Cr元素和氧元素的元素浓度之和小于第一磁性层并且低于5原子%。此时,第二磁性层的晶界宽度变得小于第一磁性层的晶界宽度。优选在从铁磁性金属层侧的第二磁性层的界面起大约2nm的薄膜厚度的区域中包含在Cr氧化物之中的Cr和氧的元素浓度之和是4.3原子%以下,并且在从该衬底侧的第一磁性层的界面起大约4nm的薄膜厚度的区域中包含在Cr氧化物之中的Cr和氧的元素浓度之和是7原子%以上且20原子%以下。此外,优选包含在第二磁性层的氧化物之中的各元素的总量是3.6原子%以上且13原子%以下,并且优选包含在第一磁性层的氧化物之中的各元素的总量是15原子%以上且30原子%以下。不需要磁性层具有透明层结构,而仅需包含在晶界之中的Cr氧化物在薄膜厚度方向上具有浓度梯度,并且包含在铁磁性金属层上的Cr氧化物之中的Cr元素和氧的元素浓度之和小于衬底侧的Cr氧化物之中的Cr元素和氧的元素浓度之和并且低于5原子%。本发明不但可在通过头执行记录时降低平均交换耦合以及平均开关场强度而且还可降低交换耦合以及开关场分布的分散。结果,与现有技术相比介质噪声降低了并且可提高分辨率;由此,可以提高S/N比。此外,通过降低具有强交换耦合的铁磁性金属层厚度,可提高磁道间距密度并且可提高相邻磁道擦除的耐性(tolerance)。因为可降低介质上的表面粗糙度,因此还可提高可靠性。结果,可兼顾高磁道间距密度与线性记录密度,并且可提供垂直磁记录介质以及利用它的磁存储装置,其中可靠性是优异的并且高密度记录是可能的。图1是对本发明的垂直磁记录介质进行说明的横截面示意图。图2是给出了校正之后的克尔(keir)回线的清晰度(defmition)以及具有软磁性底层的偶层垂直磁记录介质的饱和场(Hs)的示意图。图3是给出了包含在第一磁性层的Cr氧化物之内的元素浓度与介质S/N之间的关系的示意图。图4是给出了包含在第一磁性层的Cr氧化物之内的元素浓度与成核场之间的关系的示意图。图5是给出了在第一磁性层中包含在Cr氧化物之内的元素的元素浓度与包含所有氧化物之内的元素浓度之间的关系的示意图。图6是对本发明的第一磁性层的平面结构的透射电子显微镜观察图像进行说明的示意图,本发明的第一磁性层包括诸如Si这样的具有氧化物形成的高自由能的氧化物并且包括大量Cr氧化物。图7是对比较例的第一磁性层的平面结构的透射电子显微镜观察图像进行说明的示意图,比较例的第一磁性层包括大量诸如Si这样的具有氧化物形成的高自由能的氧化物并且包括少量Cr氧化物。图8是给出了介质S/N与包含在第二磁性层的Cr氧化物之内的元素浓度的相关性的示意图。图9是给出了重写(overwrite)性能与包含在第二磁性层的Cr氧化物之内的元素浓度的相关性的示意图。图10是给出了开关场分布(Hs-Hc)与包含在第二磁性层的Cr氧化物之内的元素浓度的相关性的示意图。图11是对包含在第二磁性层的Cr氧化物之内的元素浓度高的比较例的第二磁性层和铁磁性金属层的平面结构的透射电子显微镜观察图像进行说明的示意图。图12是对包含在第二磁性层的Cr氧化物之内的元素浓度低的本发明的第二磁性层和铁磁性金属层的平面结构的透射电子显微镜观察图像进行说明的示意图。图13是给出了介质S/N与包含在第二磁性层的所有氧化物之内的元素浓度的相关性的示意图。图14是对本发明的垂直磁记录介质的结构示例进行说明的横截面图。图15是对比较例的介质的横截面的透射电子显微镜观察图像进行说明的示意图。图16是对本发明的介质的横截面的透射电子显微镜观察图像进行说明的示意图。图17是对本发明的垂直磁记录介质的结构示例进行说明的横截面图。图18是对磁存储装置进行说明的横截面示意图。图19是对磁头与磁记录介质之间的关系进行说明的示意图。10:垂直磁记录介质11:介质驱动部分12:磁头13:致动器(actuator)14:信号处理系统20:读磁头21:读取元件22:写磁头23:主磁极24:环绕式屏蔽25:辅助磁极26:薄导体线圈41:衬底42:粘附层43:软磁性底层44:晶体织构控制和偏析促进底层45:磁性层451:第一磁性层452:第二磁性层453:第三磁性层46:铁磁性金属层47:保护层具体实施例方式为了实现低噪声特性,必须通过加宽包括有氧化物的磁性层的晶界宽度来使磁性层的晶粒分离并且降低磁团簇尺寸(交换耦合)。应当理解当Si、Ti、Nb和Ta的氧化物等等具有氧化物形成的高自由能以便增大包括有氧化物的磁性层(第一磁性层)的下侧的晶界宽度时,晶界宽度难于均匀地扩展,并且形成了许多亚颗粒。另一方面,虽然具有氧化物形成的低自由能的Cr难于单独地形成均匀的晶界,但是发现利用诸如Si、Ti、Ta和Nb等等这样的具有氧化物形成的高氧化物自由能的氧化物形成晶界的引发物(trigger)而形成了优选偏析到晶界的Cr氧化物和宽的晶界。另一方面,对于降低磁团簇尺寸和开关场分布的分散而言,通过铁磁性金属层将均匀的交换耦合引入到磁性层的晶粒之间是有效的。本发明人发现可将磁团簇尺寸的增加抑制到最小并且通过降低包含有氧化物的磁性层(第二磁性层)的上侧的晶界宽度并且通过对它上所生长的铁磁性金属层的颗粒进行控制以实际上从生长的初期阶段具有连续结构,可将均匀的交换耦合引入到磁性层的晶粒之间。为了实现这种结构,重要的是包含氧化物的磁性层的上层(第二磁性层)的氧化物是具有氧化物形成的高自由能的Si、Ti、Nb和Ta的氧化物等等,并且其中的Cr氧化物控制为小于下层的氧化物。虽然通过控制在磁性层的上层具有增大晶界宽度的作用的Cr氧化物较低而使晶界宽度变窄,但是由于Si、Ti、Nb和Ta的氧化物等等的存在而使晶界宽度逐渐地降低了对下层晶界的均匀影响(reflecting),因此可使铁磁性金属层的晶粒可以容易地生长在这些晶界上。此时,在包含有氧化物的磁性层的上层侧中,比铁磁性金属层要弱但是均匀的交换耦合与晶界宽度的均匀下降一起作用(work),这导致有助于开关场分布和平均开关场强度下降。通过使铁磁性金属层的晶粒生长在晶界上,可抑制处于一对一关系的铁磁性颗粒在第二磁性层的颗粒上的生长,通过使它们以一对多或多对一的关系生长可将均匀交换耦合引入到第二磁性层的颗粒之间,并且可降低团簇尺寸和幵关场分布的分散。更优选使多个铁磁性颗粒生长在第二磁性颗粒上这样的结构。它是通过形成下述结构而发现的,即可将铁磁性金属层的薄膜厚度抑制到最小,这会导致分辨率提高了,并且可将磁团簇尺寸的增大抑制到最小,这会导致高线性记录密度的噪声增大了并且抑制了相邻磁道擦除。作为第一磁性层,可使用下述颗粒薄膜,该颗粒薄膜包括Co作为主要成分、至少包含Cr和Pt及包含氧化物,并且该颗粒薄膜包括Co-Cr-Pt-B合金、Co-Cr-Pt-Mo合金、Co-Cr扁Pt-Nb合金、Co-Cr-Pt-Ta合金、Cr氧化物和从Si氧化物、Ta氧化物、Nb氧化物和Ti氧化物中选择出来的至少一种或多种。为了形成足以均匀地降低交换耦合的均匀且宽的晶界,优选将包含在第一磁性层之中的Cr元素和氧元素的浓度之和控制为7原子%以上且20原子%以下。此时,有效地形成了均匀且宽的晶界,均匀地降低了交换耦合,并且通过将包含在Si、Ti、Nb和Ta的下述氧化物之内的各元素以及包含在Cr氧化物之内的Cr元素和氧元素的总量控制为从大约15原子%至30原子%,可形成低噪声磁性层,所述氧化物成为用于形成晶界的引发物并且具有高氧化物形成反应性。Cr氧化物可以在氧气氛之下通过反应溅射技术形成并且可以引入到靶中作为Cr氧化物。即使将Cr氧化物引入到靶中,也优选还在氧气氛中执行溅射以便在溅射期间对缺氧进行补偿。此外,通过在衬底上施加大约-100V至-300V的偏压,可促进氧化物偏析到晶界。为了在上述范围中形成Cr氧化物,包含在靶之内的Cr浓度和Cr氧化物的浓度很重要。当它作为Cr而引入到靶中时,将相对于Co、Cr和Pr的总量而言的Cr浓度优选控制为16原子%以上且25原子%以下。如果Cr浓度低于16原子%,那么在为获得Cr氧化物而增大氧量来获得足够Cr氧化物之前开始Co的氧化并且因为Cr浓度低,因此磁各向异性急速降低了,因此这不是优选的。此外,25原子。/。以上的Cr浓度也不是优选的,因为晶粒内部未氧化的剩余Cr增加了,并且造成了磁各向异性降低了。更优选19原子%以上且25原子%以下。为了有效地形成Cr氧化物,需要与现有技术中的晶界主要是由Si、Ti、Nb和Ta等等组成的情况相比,包含在靶之中的诸如Si、Ti、Nb和Ta的氧化物等等这样的具有高氧化物形成反应性的氧化物很小。原因是氧主要与这些元素起反应并且当存在具有氧化物形成的高自由能的大量氧化物时Cr氧化物变得难于形成。当使用Si02和Ti02时,优选将包含在靶之内的这些氧化物的浓度控制为从大约4mol。/。至8mol%,并且当使用Nb20s和Ta20s时,优选将这些氧化物的浓度控制为从大约1.5mol。/。至2.5mol%。此外,应当将第一磁性层的薄膜厚度设置在满足热稳定性的范围之内,并且通常使用从大约4nm至10nm的值。此外,通过将相对于包含在第一磁性层之内的Co、Cr和Pt总量而言的Pt浓度控制为从大约15原子%至30原子%,可获得足够的磁各向异性,这会导致获得足够的热稳定性。作为第二磁性层,可使用下述颗粒薄膜,该颗粒薄膜包括Co作为主要成分、至少包含Cr及包含氧化物,并且该颗粒薄膜包括Co-Cr-Pt-B合金、Co-Cr-Pt-Mo合金、Co-Cr-Pt-Nb合金、Co-Cr-Pt-Ta合金及从Si氧化物、Ta氧化物、Nb氧化物和Ti氧化物中选择出来的至少一种或多种。通过将下述Cr氧化物中的Cr元素和氧元素的浓度之和控制为低于5原子%,可有效地促进铁磁性金属层的晶粒在其上的连续生长,所述Cr氧化物包含在包括氧化物的磁性层的铁磁性金属层侧的大约2nm的薄膜厚度区域中。更优选4.3原子%以下。通过将构成了包含在第二磁性层中的Cr氧化物与Si、Ti、Ta和Nb氧化物的各元素的总量控制为从3,6原子%至13原子%的范围中,可均匀地降低第二磁性层的晶界宽度,并且通过引入均匀的交换耦合,可降低磁团簇尺寸和开关场分布的分散。当形成第二磁性层时,通过在包括有比形成第一磁性层期间更少氧的气氛中进行溅射,抑制Cr氧化物的形成。更优选在没有氧的气氛中执行该形成,因为可抑制Cr氧化物的形成。当Cr氧化物包含在耙中时,Cr氧化物的浓度应小于第一磁性层。更优选地,对于均匀地降低晶界宽度而言有效的是使用几乎不包含任何Cr氧化物的靶并且在形成第二磁性层的同时降低气压。诸如Co/Pt和Co/Pd等等这样的多层薄膜以及包括有Co作为主要成分并且至少包括Cr的合金可用作构成了铁磁性金属层的材料。具体地说,优选使用诸如Co-Cr合金、Co-Cr-B合金、Co-Cr-Mo合金、Co-Cr-Nb合金、Co-Cr-Ta合金、Co-Cr-Pt-Cu合金、Co-Cr-Pt-B合金、Co-Cr-Pt-Mo合金、Co-Cr-Pt-Nb合金、Co-Cr誦Pt-Ta合金、Co-Cr-Pt陽Mo-B合金、Co-Cr-Pt-Nb-B合金、Co陽Cr-Pt陽Ta-B合金、Co-Cr-Pt-Cu-B合金这样的包括Co作为主要成分并且至少包括Cr的合金,因为可将噪声的增加抑制到最小,可降低开关场并且可提高耐腐蚀性。此外,优选在可降低平均开关场强度和开关场分布并且可满足热稳定性的范围中,将铁磁性金属层的薄膜厚度控制为尽可能薄。因此,可抑制相邻磁道擦除。铁磁性金属层的薄膜厚度优选为大约从1nm至5mn。在铁磁性金属层与包括有氧化物的磁性层之间插入层,以对它们之间的交换耦合进行控制。Ru、CoRu、CoCr-Si02等等可用作对上下层之间的交换耦合进行控制的层。对晶体取向和偏析进行控制的底层(晶体织构控制和偏析促进底层)起对记录层的晶体取向和晶粒尺寸进行控制并且降低记录层的晶粒之间的交换耦合这样的重要作用。人们仅须将晶体织构控制和偏析促进底层的薄膜厚度、配置和材料控制在可获得上述效果的范围中。例如,在诸如Ta等等这样的微晶层、诸如NiTa等等这样的非晶层和具有面心立方(fcc)结构的金属层上,可以使用形成了Rn或者Ru合金层这样的配置以及通过fcc金属而在Ti合金层上形成了Ru合金层这样的配置。诸如Ta等等这样的微晶层、诸如NiTa等等这样的非晶层和具有面心立方晶格(fcc)结构的金属层的作用是用于提高沿着Ru薄膜表面的垂直方向的c轴取向。具体地说,因为与诸如Ta等等的微晶材料以及诸如NiTa等等这样的非晶态材料相比,在fcc金属中对颗粒尺寸和粗糙度的控制是优异的,因此优选广泛地促进了记录层的偏析并且提高了热稳定性。作为具有面心立方晶格(fcc)结构的金属,可使用Pd、Pt、Cu、Ni和包括这些的合金。具体地说,优选使用具有Ni作为主要成分并且包括W、Cr和Cu的合金,因为可形成适当的颗粒尺寸和粗糙度并且可促进记录层的偏析。例如,可使用Ni-6原子。/。W合金、Ni-8原子%W合金、Ni-6原子%V合金、Ni-10原子%Cr合金、Ni-10原子%Cr-6原子y。W合金、Ni-10原子%03原子。/。Nb合金、Ni-lO原子。/。Cr-3原子。/。B合金、Ni-20原子。/。Cu合金、Ni-20原子。/。Cu-6原子。/。W合金、Ni-20原子。/。Cu-3原子。/。Ti合金和Ni-20原子。/。Cu-3原子。/。Ta合金。将薄膜厚度有规则地控制为从2nm至12mn范围中的值。因为可提高fcc层的(lll)取向,因此优选在fcc金属下面形成诸如Cr-Ti合金、Cr-Ta合金、Ni-Ta合金和Al-Ti合金等等这样的非晶层。将非晶层的薄膜厚度正常地控制为大约从1nm至5nm的值。Rn合金层的作用是用于对记录层的晶粒尺寸以及晶体取向进行控制并且降低记录层的晶粒之间的交换耦合。人们必须将薄膜厚度控制在满足它的范围中并且正常地使用大约从3nm至30nm的值。优选将Ru层分成两层或更多层形成,并且在低气压之下以高沉积速率形成下部Ru层以及在高气压之下以低沉积速率形成上部Ru层,这会导致抑制了晶体取向的恶化并且促进了记录层的偏析。Ar以及少量氧和氮添加到Ar中的气体可用作溅射气体。此外,优选Ru层的与记录层侧的界面部分是由氧化物和氮化物环绕Ru的粒层形成的,因为它促进了磁性层的偏析。颗粒薄膜可以在添加有少量氧和氮的Ar气体之下通过利用反应溅射技术由具有Ru作为主要成分并且包括诸如Si、B、Ti、Ta和Nb这样的易氧化的元素的合金形成,并且颗粒薄膜可以通过利用将诸如Si02、Ti02、Ta205和Nb20s这样的氧化物添加到Ru上这样的靶形成。此后,参考附图对用于执行本发明的实施方案进行详细说明。[实施方案1]图1是对本发明的垂直磁记录介质进行说明的示意性横截面图。该垂直磁记录是通过利用ANELVA有限公司所制造的溅射装置(C-3010)而制造的。该溅射装置包括十个处理腔和一个加载/卸载腔,并且每个腔是独立抽空的。依次通过使其上承载衬底的载体移动到加载到每个处理腔之中,使所有腔抽空到1X10—Spa以下的真空级别上并且执行该处理。将旋转磁铁磁控溅射阴极安装到处理腔中以进行溅射,并且通过利用DC溅射形成金属薄膜和碳膜。直径为63.5mm的玻璃衬底用于衬底4K为了提高与衬底的粘附性,在衬底41上形成了10nm厚由NiTa合金组成的粘附层42。在这里,Ni-37.5原子。/。Ta用作N汀a合金。粘附层42必须确保粘附到衬底以及粘附层的上层,并且可使用Ni系合金、Co系合金和Al系合金中的任何一种。例如,可使用AlTi合金、NiAl合金、CoTi合金和AlTaPIio其上的软磁性底层43具有通过薄Ru而使FeCoTaZr合金层叠的三层结构。51原子。/。Fe-34原子%0)-10原子。/。Ta-5原子。/。Zr在这里用于FeCoTaZr合金。上部和下部FeCoTaZr合金层通过采用诸如AFC(反铁磁耦合)这样的结构而通过Ru层彼此反铁磁地耦合,这会导致由于软磁性底层所引起的噪声降低。此时,应当将Ru的薄膜厚度控制在可确保AFC的范围中,并且将其控制为0.4nm。此外,在可确保AFC的范围中可将添加元素添加到Ru中。对于每个层而言,将FeCoTaZr合金的薄膜厚度控制为15mn。作为软磁性底层的配置,可使用下述结构,即在该结构中在包括有诸如FeCoTaZr合金这样的软磁性材料的一个软磁性底层下面提供了用于对软磁性底层的磁畴进行钉扎的钉扎层(pinninglayer),并且在AFC结构下面提供了钉扎层。此外,作为构成了软磁性底层的材料,可使用FeCoTaZr合金、FeCoTaZrCr合金、CoTaZr合金、CoTaZrCr合金、FeCoB合金、FeCoCrB合金、CoNbZr合金和CoTaNb合金。晶体织构控制和偏析促进底层44具有依次形成了4nm厚Ni-37.5原子。/。Ta、8nm厚Ni-6原子。/。W和16nm厚Ru这样的结构。晶体织构控制和偏析促进底层44对记录层的晶体取向和晶粒尺寸进行控制,并且起降低记录层中的晶粒之间的交换耦合这样的重要作用。应将晶体织构控制和偏析促进底层44的薄膜厚度、配置和材料控制在可获得上述效果的范围中,并且它并不局限于上述薄膜厚度、配置和材料。在晶体织构控制和偏析促进底层44的配置中,N汀a层的作用是用于对NiW层的晶体取向进行控制并且提高NiW层的(lll)取向。应将NiTa层的薄膜厚度控制在满足它的范围中并且正常地使用大约从lnm至5nm的值。可以使用诸如AlTi合金、CrTi合金和CrTa合金这样的非晶态材料以及诸如Ta这样的微晶材料代替NiTa合金。晶体织构控制和偏析促进底层44中的NiW层的作用是用于提高沿着Ru薄膜表面的垂直方向的c轴取向并且用于对其颗粒尺寸和粗糙度进行控制。应当将NiW层的薄膜厚度控制在的范围中满足它并且有规律地使用大约从2nm至12nm的值。可以使用具有面心立方晶格(fcc)结构的Pd、Pt、Cu和Ni以及包括有它们的合金代替NiW合金。具体地说,如果使用包括有Ni作为主要成分并且至少包括W、Cr、V或Cu的合金,那么优选促进记录层的偏析。Ru层的作用是用于对记录层的晶粒尺寸和晶体取向进行控制并且用于降低记录层的晶粒之间的交换耦合。应将薄膜厚度控制在满足它的范围中并且通常使用大约从3nm至30nm的值。在该实施方案中,将晶体织构控制和偏析促进底层44的Ru层分成两个层形成,并且下半部是在1Pa的气压和4nm/s的条件下形成的以及上半部是在6.5Pa的气压和1.5nm/s的条件下形成的。磁性层45是由第一磁性层451和第二磁性层452的偶层组成的,并且第一磁性层451和第二磁性层的薄膜厚度分别是10nm和3nm。3.5nm厚60原子。/。Co-12原子。/。Cr-16原子。/。Pt-12原子。/。B合金用于不包括氧化物的铁磁性金属层46,并且Ar用于溅射气体并且将总气压控制为0.6Pa。此后,形成3.5nm厚DLC(类金刚石碳)薄膜以作为保护层47。通过在其表面上涂敷有机润滑剂而形成了润滑膜。通过在室温下利用克尔效应测量设备来执行对磁性的评价。测量波长是350nm并且激光光点直径大约是1mm。在与样品薄膜表面相垂直的方向上施加磁场;将最大磁场控制为1580/m(20kOe),并且以恒定扫描速率测量克尔回线60秒。因为当记录层的薄膜厚度很薄时激光束到达了软磁性底层,因此将软磁性底层的磁化所引起的克尔旋转角的变化添加到来自记录层的信号上。由软磁性底层所引起的信号随磁场线性地变化,直至磁化在与薄膜表面相垂直的方向上变得饱和,以便将大约395至1580kA/m(5至10kOe)上的倾斜(inclination)控制为零。图2示出了校正之后的条件。此后,获得了矫顽磁力(Hc)、饱和场(Hs)和成核场(-Hn)。将Hs定义为如图2所示当磁场从0增大至1580kA/m(20kOe)时克尔旋转角变为饱和值的95%的磁场。将-Hn定义为当磁场从正地饱和状态降低时克尔旋转角变为饱和值的95%的磁场,并且当它处于第二象限时将它定义为正。在对记录性能进行评价的过程中,在头与介质间的相对速度为10m/秒、斜角为0度及磁间隔为大约8nm的条件下,对重现输出信号和噪声进行测量,并且将介质S/N定义为在27126fr/mm的线性记录密度之下的重现输出信号与当在上述线性记录密度之下对信号进行记录时的累积噪声的比率。在将2713fr/mm的信号重写到27126fr/mm的信号上之后,通过利用27126fr/mm的记录密度的信号的残余元素(residualelement)与2713fr/mm的信号强度的比率来评价OW性能。屏蔽间隙长度为60nm并且磁道宽度为70nm的巨磁阻元件用于磁头的读取部分。磁头的记录部分具有单磁极型头的结构,该单磁极型头具有主磁极、辅助磁极和薄膜导体线圈;并且主磁极包括主磁极的yolkpart和磁极尖并且形成了屏蔽以覆盖主磁极(环绕屏蔽式头)的交叉轨方向和下行轨方向。使用主磁极的尖头部分的几何磁道宽度是90nm、主磁极与尾部屏蔽之间的距离是50nm及主磁极与侧屏蔽之间的距离是100nm这样的磁头。作为装配在硬盘驱动器中的磁头的读取元件,除了可使用巨磁阻元件之外,还可使用电流在与元件薄膜面相垂直的方向上流动的电流垂直于平面-GMR(CPP-GMR)和隧道式磁阻元件(TMR)。此外,在交叉轨方向上不具有屏蔽的屏蔽头以及单磁极型头可用作记录头。然而,从可提髙写入场梯度的观点来看,至少在主磁极的下行轨方向上提供了屏蔽的屏蔽头是优选的。当在薄膜厚度方向上执行对磁性层的成分分析时,使用X射线光电光谱(XPS),并且通过利用加速电压为500V的离子枪从样品表面起溅射并且通过利用铝的Ka线作为X射线源而蚀刻到深度方向来对长度为1.5mm并且宽度为0.1mm的区域进行分析。通过对与C的Is电子、O的Is电子、Si的2s电子、Cr的2p电子、Co的2p电子、Ru的3d电子和Pt的4f电子的每一个相对应的能谱进行检测而获得各元素的含量。例如,当获得了Cr氧化物的量时,从Cr光谱的化学位移可获得金属Cr与Cr氧化物的比率。在气压为5Pa、沉积速率为3nm/s及衬底偏压为-275V的条件之下,通过利用下述靶形成第一磁性层451和第二磁性层452,所述靶包括比率为94mol:6mol的61原子%0>-21原子。/。CM8原子。/oPt和Si02。制造出样品,其中氩仅用作用于形成第二磁性层452的溅射气体并且在形成第一磁性层期间溅射气体的氧浓度从2%变为4%。当对第二磁性层452的上层的大约2nm的区域中的平均氧化物浓度进行检查时,包含在所有氧化物之内的元素浓度是10.4原子%并且包含在Cr氧化物之内的元素浓度是0.3原子%。在下述样品中的第一磁性层451的下层侧的大约4nm的区域中获得包含在Cr氧化物之内的Cr元素和氧元素的浓度之和,在所述样品中在形成第一磁性层451期间将氧浓度控制为从2%至4%。图3和图4是给出了介质S/N和成核场(-Hn)与包含在Cr氧化物之内的Cr元素和氧元素的浓度之和的相关性的示意图。当Cr元素和氧元素的浓度之和变为低于7原子。/。时,介质S/N急速地恶化。应当理解这是因为由于Cr氧化物的降低而使晶界的形成不足,并且作用于第一磁性层451的晶粒之间的交换耦合快速地变强。因为成核场(-Hn)小,因此Cr不偏析而是保持在晶粒中,因此应当理解磁各向异性降低了并且热稳定性恶化了。另一方面,当Cr氧化物的浓度变为大于20原子%时,介质S/N和成核场也急速地降低。形成了这样的样品,即在该样品中形成了第一磁性层451并且此后形成了保护层47,而没有形成第二磁性层452和铁磁性金属层46,并且通过利用透射电子显微镜观察到第一磁性层451。虽然平均晶粒减少了,但是颗粒尺寸的分布大并且观察到在晶粒内部存在具有小宽度的晶界这样的许多亚颗粒,因此认为颗粒尺寸分布的增大会引起介质S/N恶化。此外,当Cr氧化物浓度大至20原子。/。时,包含在第一磁性层的氧化物之内的所有元素的浓度之和大至大约34原子%,因此认为磁性颗粒的堆积密度的下降会引起介质S/N恶化。根据成分分析,确保存在大量Co氧化物,因此认为通过降低磁各向异性并且对颗粒尺寸进行精炼会恶化热稳定性。应当理解包含在第一磁性层的0氧化物之内的元素浓度优选是7原子%以上且20原子%以下。此时,如图5所示包含在氧化物之内的所有元素的浓度之和是从15原子%至30原子%。接下来,制造表l所示的样品,在该样品中用于形成磁性层45的靶中的氧化物的类型和浓度变化了。第一磁性层451的薄膜厚度是10nm并且第二磁性层452的薄膜厚度是3mn。<table>tableseeoriginaldocumentpage23</column></row><table><table>tableseeoriginaldocumentpage24</column></row><table>样品1-8至1-10包含与样品1-1至1-7几乎相同量的总量为大约20原子%的氧化物,该氧化物可构成第一磁性层451的晶界。在这里,应当理解即使通过对包含在Cr氧化物之内的元素浓度在7原子%以上且20原子%以下范围中的样品1-1至l-7与包含在Cr氧化物之内的元素浓度低于7原子%的样品1-8至1-10进行比较,氧化物总量相同,也可在包含较大量的Cr氧化物的样品中获得高介质S/N。应当理解对于提高S/N而言增大包含在Cr氧化物之内的元素浓度是有效的,而并不是增大诸如Si这样的具有氧化物形成的高自由能的氧化物浓度。此外,从对样品1-1至1-7与样品1-11之间的比较来看,应当理解除了具有包含在Cr氧化物之内的元素的高浓度之外,还至少包括诸如Si、Ti、Ta和Nb这样的具有氧化物形成的高自由能的氧化物也是很重要的。当制造未形成第二磁性层452和铁磁性金属层46的样品并且通过利用透射电子显微镜(TEM)来观察第一磁性层451的结构时,在包括有大量Cr氧化物以及诸如Si这样的具有氧化物形成的高自由能的氧化物等等的样品l-l至l-7中,观察到如图6所示的宽且均匀的晶界。另一方面,在包括具有氧化物形成的高自由能的大量Si氧化物和少量Cr氧化物的样品1-8至1-10中,虽然如图7所示平均晶粒小,但是晶界宽度不均匀,存在许多亚颗粒,并且观察到颗粒尺寸分布增大了。在即使看到颗粒尺寸降低的样品1-8至1-10中,因为亚颗粒之间的交换耦合很强并且实际上磁团簇尺寸没有降低,因此结果是S/N比没有提高。此外,开关场分布随着颗粒尺寸的分布以及结晶取向的分布增大而增大被认为是介质S/N恶化的原因。当通过利用透射电子显微镜(TEM)与电子能量损失谱(EELS)相结合的TEM-EELS来对样品1-1至1-7的晶界部分的成分进行分析时,证实存在大量Si、Cr和O(氧)。另一方面,在样品1-8至1-10中,在晶界观察到大量Si和O(氧)并且Cr量小。此外,在样品l-ll中,虽然存在宽的晶界,但是宽度不均匀,大量地观察到晶粒叠加在一起这样的状态,并且与包括有Si氧化物、Ta氧化物、Nb氧化物和Ti氧化物的样品1-1至l-7相比晶粒尺寸长得过大(overgrown)。认为它是使S/N恶化的原因。应当理解使Cr氧化物偏析并且通过利用诸如Si、Ti、Ta和Nb这样的具有氧化物形成的高自由能的氧化物等等成为晶界的引发物,可形成宽且均匀的晶界。因此,作为包含在第一磁性层451之中的氧化物,包括诸如Si、Ti、Ta和Nb这样的具有氧化物形成的高自由能的氧化物等等并且将包含在Cr氧化物之中的元素浓度控制为7原子%以上且20原子%以下,由此应当理解可形成均匀且宽的晶界,交换耦合均匀地降低,并且S/N可极大地提高。接下来,制造出这样的样品,即在该样品中包含在第二磁性层452之内的Cr氧化物的浓度变化了。在气氛是氩与氧的混合气体、沉积速率为3nm/s及衬底偏压为-275V的条件之下,通过利用下述靶形成了第一磁性层451和第二磁性层452,所述靶包括比率为94mol:6mo1的61原子。/。Co-21原子。/。Cr-18原子。/。Pt和Si02。将溅射气压控制为5.5Pa,在形成第一磁性层451期间溅射气体中的氧浓度是3%,并且在形成第二磁性层452期间溅射气体中的氧浓度从0变为4%。当检查第一磁性层451的下层4nm的区域中的平均氧浓度时,包含在所有氧化物之内的元素浓度是25.1原子。/。并且包含在Cr氧化物之内的元素浓度是15原子%。在下述样品中的第二磁性层452上层侧的大约2nm的区域中获得Cr氧化物的浓度,在所述样品中将在第二磁性层452的形成期间的氧浓度控制为从0至4%。绘制出这些样品的介质S/N、OW性能和开关场分布(Hs-Hc)对包含在第二磁性层452的Cr氧化物之内的元素浓度的曲线,并且图8至图IO示出了该结果。当包含在第二磁性层452之内的Cr氧化物中的元素浓度增大超过了包含在第一磁性层451的Cr氧化物之内的元素浓度时,S/N急速地恶化。这是因为随着开关场分布增大而使噪声增大了并且通过开始Co氧化使分辨率降低了。包含在第二磁性层452的Cr氧化物之内的元素浓度低于第一磁性层451是必需的。使包含在第二磁性层452中的Cr氧化物之内的元素浓度小于第一磁性层451中的Cr氧化物之内的元素浓度,这导致了通过慢慢地降低开关场分布而提高介质S/N。当包含在第二磁性层452之内的Cr氧化物中的元素浓度低于5%时,开关场分布和OW性能极大地提高了,这导致了介质S/N急速地提高。从衬底侧起对包含在介质S/N急速变化的第二磁性层452之内的Cr氧化物中的元素浓度大约为5%的样品处理为与几乎仅包括有第二磁性层452和铁磁性金属层46的厚度一样薄,并且通过透射电子显微镜可观察到面状结构。当包含在第二磁性层452中的Cr氧化物之内的元素浓度低于5%时,铁磁性金属层46连续地生长在第二磁性层452的晶界上并且如图12所示观察不到大宽度的晶界。另一方面,当包含在第二磁性层452中的Cr氧化物之内的元素浓度大于5%时,在对磁性层的晶界有影响的铁磁性金属层中形成了晶界并且可观察到具有大宽度的晶界。应当理解包含在第二磁性层452中的Cr氧化物越多,出现铁磁性金属层46中的晶粒分离的概率越大。在这里,连续地生长在晶界上意味着第二磁性层452的晶界与铁磁性金属层46的晶界不一致的情况是主导的。认为通过使铁磁性金属层46的晶粒生长在第二磁性层452的晶界上而将均匀交换耦合引入到磁性层45的颗粒之间,这会导致磁性层45的开关场的强度和分布降低了。另一方面,当第二磁性层452中存在大量Cr氧化物并且晶界较宽时,铁磁性金属层46的晶粒难于生长在第二磁性层452中的主要是由氧化物所组成的晶界上,因此在生长的初期阶段晶粒彼此相分离地生长并且铁磁性金属层46的晶粒之间的交换耦合变为不均匀地影响晶界结构。结果,认为无法将均匀交换耦合引入到磁性层45的颗粒之间并且开关场分布增大了。应当理解优选使第二磁性层452的晶界变宽的Cr氧化物较少,以便将均匀交换耦合引入到磁性层45中并且降低开关场分布。具体地,当将包含在Cr氧化物之内的元素之和控制为低于5原子%时,应当理解显著地提高了OW性能和S/N。作为上述样品的横截面的TEM观测结果,应当理解通过将包含在第二磁性层452之内的Cr氧化物的浓度控制为低于第一磁性层451之内的Cr氧化物的浓度并且低于5%,使第二磁性层452的晶界宽度变得比第一磁性层451的晶界宽度窄。接下来,通过利用图8至图IO所示样品所使用的相同靶来形成第一磁性层451,并且通过利用61原子%-21原子。/。Cr-18原子。/。Pt和Si02的比率从99mol:lmol变为90mol:10mol的靶来制备第二磁性层452。在这里,当形成第二磁性层452时,不将氧引入到此并且仅使用Ar。包含在第二磁性层之内的Cr氧化物中的元素浓度低于l原子。/。。图13示出了所制备的样品的介质S/N与包含在第二磁性层之中的氧化物中的元素总量的相关性。应当理解当包含在第二磁性层452中的氧化物之中的元素总量非常小而小至1.8原子%时,S/N恶化了。这是由于宽的且主要是由氧化物组成的第一磁性层451的晶界宽度,因此当包含在第二磁性层452之内的氧化物的量非常小时,氧化物的总量变得不足以形成对第一磁性层451的晶界有影响的晶界,晶界不是均匀地降低并且晶界在多个位置上被耦合,并且在晶界宽度中创建了不均匀性。结果,认为创建了下述区域,该区域具有作用于第二磁性层452的晶粒之间的强交换耦合效应,并且磁团簇尺寸增大了,由此噪声增大了。应当理解将包含Cr氧化物在之内的元素之和控制为低于5原子%并且将氧化物的总量控制为大于18原子%以便均匀地降低晶界宽度。此外,应当理解当包含在第二磁性层452中的氧化物之中的元素总量高达16.3原子%时,观察到介质S/N恶化了。这起因于当氧化物中的元素总量变得大于超过13%时随着具有氧化物形成的高自由能的Si氧化物增加了而使亚颗粒增加了,并且这是因为在其上生成的铁磁性金属层的晶体取向恶化了以及颗粒间交换耦合的分散增大了。应当理解将包含在Cr氧化物之内的Cr元素和氧元素之和控制为低于4.3原子%并且将氧化物总量控制为低于13原子%以便均匀地降低晶界宽度。因此,第一磁性层451具有使Cr氧化物和从Si、Ti、Nb和Ta中选择出来的至少一种或多种氧化物偏析到其晶界这样的结构,并且第二磁性层452包括从Si、Ti、Nb和Ta中选择出来的至少一种或多种氧化物,并且将其Cr氧化物控制为小于第一磁性层451,由此变得明白的是通过降低第二磁性层452的晶界宽度并且使其上所生长的铁磁性金属层46的晶粒连续地生长在磁性层45的晶界上,可降低交换耦合和开关场的分布并且可实现高S/N、分辨率和热稳定性。图14是对所制造的垂直磁记录介质进行说明的示意性横截面图。通过利用与上述实施方案1相同的溅射装置来制造该实施方案的垂直磁记录介质,并且除了磁性层45和铁磁性金属层46之外采用与实施方案1相同的层配置和相同的处理条件。在沉积速率为3nm/s和衬底偏压为-275V的条件之下,通过利用下述复合靶来形成磁性层45,所述复合靶包括比率为94mol:6mol的[61原子。/。Co-21原子。/。Cr-18原子%PtpBSi02。薄膜厚度为13nm。在形成磁性层45的同时,溅射气体条件按照逐步方式变化。在形成磁性层45的下层侧的同时,使用氩与氧的混合气体并且将总气压和氧浓度分别控制为5Pa和3%。在形成磁性层45的上层的同时,仅使用Ar并且将总气压设置为2Pa。不包括氧化物的铁磁性金属层46是由CoCrPt合金、CoCrPtB合金和CoCrPtBMo合金形成的,并且Ar用作溅射气体并且将总气压控制为0.6Pa。表2给出了磁性层45的上层和下层的薄膜厚度以及铁磁性金属层46的成分和薄膜厚度。作为比较,制造这样的介质,即在该介质中在形成磁性层45期间溅射气体条件不变并且将溅射气体中的氧浓度控制为恒定3%,并且制造这样介质,即在该介质中通过利用下述复合靶来形成磁性层45,所述复合靶包括比率为88mol:12mol的[72原子y。Co-10原子。/。Cr-18原子。/。Pt]和Si02。它们在表2中共同地示出。<table>tableseeoriginaldocumentpage30</column></row><table><table>tableseeoriginaldocumentpage31</column></row><table>*无法获得足够的误码率以对相邻磁道擦除进行测量。对实施方案2-l至2-3与比较例2-l至2-3进行比较,应当理解当铁磁性金属层46的薄膜厚度相同时该实施方案的介质具有较好的OW性能以及较好的S/N。它与该实施方案的小饱和场(Hs)以及开关场(Hs-Hc)的小分散相对应。虽然铁磁性金属层46的薄膜厚度增至6至7nm的比较例2-4至2-6示出了该实施方案相同的Hs、开关场(Hs-Hc)的分散和与S/N,但是随着薄膜厚度增加了而使其分辨率恶化了。假定当以线性记录密为每厘米4.33Xl()S位(bit)(433kbit/cm,1100kbit/inch)的线性记录密度来对数据进行记录并且以108位读取数据时,误码率(BER)是(错误位计数)/(读取位计数)。当以433kbit/cm的线性记录密度来测量误码率(当读取108位的数据时,BER:(错误位计数)/(读取位计数))时,实施方案2-1至2-5以及比较例2-4至2-6的介质具有10—5至10—6的BER(Log1Q(BER)=-5至-6)。当在该线性记录密度之下将数据记录到磁道间距变化的多个磁道中时,根据当误码率是l(T3以下的偏离磁道(off-track)能力变为上述磁道间距的30%时的磁道间距来计算磁道间距密度,磁道间距大约是每厘米8.66X104个磁道(86.6ktrack/cm,220ktrack/inch)。通过利用通过上述方法所获得的磁道间距密度来测量将数据一次记录到一个磁道之后相邻磁道的误码率BER(l次)以及将数据10000次记录到一个磁道之后相邻磁道的误码率BER(10000次),并且从比率的对数Log1()(BER(10000次)/BER(1次)中获得相邻磁道的误码率的降低量(相邻磁道擦除)。结果,在具有厚的铁磁性金属层的比较例2-4至2-6中,应当理解相邻磁道中的误码率极大地降低了。因为与颗粒薄膜相比铁磁性金属薄膜在薄膜之内具有很强的交换耦合,因此磁团簇尺寸急剧地增大了,虽然开关场分布随薄膜厚度的增加而降低了。因此,应当理解在相邻磁道的强影响之下,出现了相邻磁道中的误码率急剧降低。对实施方案2-1至2-5进行比较,应当理解在铁磁性金属层46中包括硼的实施方案具有更好的S/N并且抑制了相邻磁道擦除。根据通过利用TEM对铁磁性金属层46的晶粒尺寸的评价,在包括有硼的实施方案2-1至2-4中连续地生长如图12所示的小于磁性层45的晶粒。另一方面,应当理解在不包括有硼的实施方案2-6中铁磁性金属层45的晶粒生长为大颗粒并且生长在磁性层45的晶界上。认为通过降低铁磁性金属层的晶粒尺寸并且使晶界数目增加,降低作用在包括有硼的铁磁性金属层46的侧向薄膜方向上的交换耦合,因此提高S/N并且抑制相邻磁道擦除。应当理解对于铁磁性金属层46的晶粒而言,小于磁性层45的晶粒连续生长的状态是更优选的。作为通过利用光电子能谱来在薄膜厚度方向上进行成分分析的结果,Cr氧化物在磁性层45的上层侧逐渐降低的状态对应于实施方案2-1至2-5中的停止在溅射期间引入氧气。并且,如表2所示,应当理解在铁磁性金属层46的界面侧的大约2nm的薄膜厚度的区域中包含在Cr氧化物之内的元素浓度减少到低于5%。另一方面,在恒定氧浓度之下所形成的比较例2-1至2-6中,示出了包含在Cr氧化物之内的元素浓度高达14.5%,即使在铁磁性金属层46的界面侧的大约2nm的薄膜厚度的区域中。使这些样品在截面方向上与若干颗粒一样薄并且通过利用TEM对截面结构进行分析。结果,应当理解当铁磁性金属薄膜与比较例2-l一样薄时,观察到宽晶界直至如图15所示的磁性层45的表面,因此在其上生长的铁磁性金属层46在生长初期阶段由于受到磁性层45的晶界影响具有离散结构。另一方面,应当理解在如图16所示的实施方案2-1至2-5中,磁性层45的上层侧的晶界宽度随Cr氧化物的浓度降低而变窄;在其上生长的铁磁性金属颗粒连续地生长在磁性层45的晶界上;以及与比较例2-l至2-6相比表面平滑度变得更好。也就是说,应当理解铁磁性金属层46侧的磁性层45的界面周围上的Cr氧化物的浓度降低对于控制铁磁性金属层46的结构以及将均匀交换耦合引入到其中而言是重要的。对实施方案2-1至2-3与比较例2-7至2-8相比,在磁性层45的下层中具有髙浓度的Cr氧化物的实施方案中的介质具有更好的S/N。当诸如比较例2-7和2-8这样的仅具有氧化物形成的高自由能的Si02增加时,虽然其晶粒尺寸降低了,但是通过形成大量亚颗粒可使颗粒尺寸的分散和晶界宽度增大。认为由于亚颗粒之间的强交换耦合而使磁团簇尺寸增大了,这导致噪声增大了。另一方面,在该实施方案的介质中,认为由于形成了宽且均匀的晶界而使磁团簇尺寸降低了,这导致噪声降低了。作为实施方案2-6至2-8,制造这样的介质,即在介质中将CoRu合金、CoCr合金或CoCr-Si02插入到实施方案2-2的介质中的铁磁性金属层46与磁性层45之间作为用于对中间层交换耦合进行控制的层。作为比较例2-9至2-11,制造这样的介质,即在介质中将CoRu合金、CoCr合金或CoCr-Si02插入到比较例2-1的介质中的铁磁性金属层46与磁性层45之间。表3给出了插入到铁磁性金属层46与磁性层45之间的层的成分和薄膜厚度以及该介质的磁特性和记录性能。对铁磁性金属层与磁性层之间的交换耦合进行控制的层HsHs-HcOWS/N相邻磁道擦除靶成分薄膜厚度(kA/m)(kA/m)(-dB)(dB)实施方案2-660原子。/。Co-40原子。/oRu0.5nm5692434914.20.4实施方案2-765原子。/。Co-35原子%&0.6nm5652354814.50.5实施方案2-894[60原子。/。Co-40原子%Cr]-6mol%Si021.2nm5692514914.00.6比较例2-960原子n/。Co40原子n/oRu0.5nm7083023611.9承比较例2-1065原子y。Co-35原子%&0.6nm7002983712承比较例2-1194[60原子。/。Co-40原子%Cr]-6mol%Si021.2nm7163183511.7**无法获得足够的误码率以对相邻磁道擦除进行测量。应当理解即使当将对上下层之间的交换耦合进行控制的层插入到铁磁性金属层46与磁性层45之间,该实施方案的介质也具有优异的OW性能和更好的S/N。它与该实施方案的小饱和场(Hs)和开关场(Hs-Hc)的小分散相对应。对实施方案2-2与实施方案2-6至2-8进行比较,虽然通过插入了对交换耦合进行控制的层而提高了OW性能,但是S/N以及相邻磁道擦除的耐性略微恶化了。应当理解这是因为当插入诸如CoRu合金、CoCr合金、CoCr-Si02等等这样的对交换耦合进行控制的层时与磁头的写入场的匹配变坏了,并且通过降低磁性层45与铁磁性金属层之间的交换耦合而进一步降低了开关场,因为通过随着磁性层45中的Cr氧化物的浓度梯度以及随着上层侧的Cr氧化物的浓度降低而降低晶界宽度并且使在其上生长的铁磁性金属层46的晶粒生长在磁性层45的晶界上,进一步降低开关场。应当理解当可获得足够的写入场时,不必插入对交换耦合进行控制的层。另一方面,根据对比较例2-1与比较例2-9至2-11之间的比较,当磁性层45的上层的氧化物浓度高时通过插入对交换耦合进行控制的层提高OW并且还提高S/N。然而,它低于实施方案2-2;应当理解通过使晶界宽度随着磁性层45中的Cr氧化物的浓度梯度以及随着磁性层45的上层侧的Cr氧化物的浓度降低而降低,使在磁性层45上所生长的铁磁性金属层46的晶粒连续地生长在磁性层45的晶界上是重要的。在该实施方案的介质中,变为热稳定性的指数的-Hn具有159kA/m以上的值并且不存在热问题。从上述结果,应当理解通过在形成磁性层的上侧的同时降低氧并且当在一个腔中制造磁性层时降低Cr氧化物的浓度,可获得与实施方案l相同的效果。因此,磁性层45的下层具有这样的结构,即在该结构中使Cr氧化物以及从Si、Ti、Nb和Ta中选择出来的至少一种或多种氧化物偏析到晶界,并且磁性层45的上层包括从Si、Ti、Nb和Ta中选择出来的至少一种或多种氧化物,其中将其Cr氧化物控制为小于磁性层45的下层,由此变得明白的是铁磁性金属层46的薄膜厚度降低了并且通过降低磁性层45的上层的晶界宽度并且使生长在其上的铁磁性金属层46的晶粒连续地生长在磁性层45的晶界上,降低交换耦合和开关场的分布,这导致抑制了相邻磁道中的误码率恶化并且实现了高S/N以及优异的热稳定性。图17是对所制造的垂直磁记录介质进行说明的示意性横截面图。通过利用与实施方案1相同的溅射装置来制造该实施方案的垂直磁记录介质,并且除了磁性层45和铁磁性金属层46之外采用与实施方案1相同的相同层配置和处理条件。包括有氧化物的磁性层45具有第一磁性层451、第二磁性层452和第三磁性层453的三层结构。通过利用包括有表4所示的CoCrPt合金和Si02的复合靶,以3nm/s的沉积速率使第一磁性层451和第二磁性层452沉积。58原子。/。Co-12原子。/。Cr-18原子。/。Pt-12原子。/。B合金用于不包括氧的铁磁性金属层46;氩用于溅射气体,并且将总气压控制为0.6Pa。对铁磁性金属层46的薄膜厚度进行控制以使OW性能几乎恒定。表4给出了第一、第二和第三磁性层的薄膜厚度、成分、总气压、氧浓度、衬底偏压条件和铁磁性金属层46的薄膜厚度。此外,制造了并且在表4中示出在低氧浓度之下通过利用包括有更少Cr和更多Si02的复合靶将第一磁性层451或第二磁性层452形成为包括更少Cr氧化物和更多Si氧化物的层的比较例,及第三磁性层453在氧气氛之下形成并且包含大量Cr氧化物的比较例。用于形成第三磁性层453的靶是包括有比率为95mol:5mol的[59原子。/。Co-23原子。/。Cr-18原子。/。Pt]与Si02的复合靶并且它对于所有实施方案和比较例是共同的,因此在表4中省略了靶的成分。[表4]<table>tableseeoriginaldocumentpage37</column></row><table><table>tableseeoriginaldocumentpage38</column></row><table>*无法获得足够的误码率以对相邻磁道擦除进行测量。根据对实施方案3-1至3-4与比较例3-1至3-4之间的比较,应当理解通过在第一磁性层中除了包括Si氧化物之外还包括大量Cr氧化物,可获得高S/N。制造出未形成有从第二磁性层452至铁磁性金属层46的层的样品,并且通过利用TEM来观察该结构。结果,在与包括有大量Cr氧化物的实施方案相对应的样品中,观察到宽且均匀的晶界,并且另一方面,在下述样品中观察到许多具有窄晶界的亚颗粒,所述样品包括有具有氧化物形成的高自由能的大量Si氧化物以及较少Cr氧化物。因为在比较例3-1至3-4中作用于亚颗粒之间的交换耦合强,因此磁团簇尺寸不会变小并且无法提高S/N。另一方面,认为通过使第一磁性层成为除了包括Si氧化物之外还包括大量Cr氧化物的颗粒薄膜,使晶界均匀地增加;通过均匀地降低交换耦合降低磁团簇尺寸,并且可提高S/N。此外,根据对实施方案3-l至3-4与比较例3-5至3-8的比较,因为当与铁磁性金属层相邻的第三磁性层453中的Cr氧化物浓度变得更高时,要获得与该实施方案相同的OW性能所必需的铁磁性金属层46的薄膜厚度变厚,因此分辨率极大地降低了并且介质S/N降低了。此外,当将信号记录在一个磁道中时,相邻磁道的误码率(相邻磁道擦除)的降低极大地增加了。因为铁磁性金属薄膜中的交换耦合比颗粒薄膜中的交换耦合强得多,因此磁团簇尺寸快速地增大,虽然开关场分布随薄膜厚度的增加而降低。因此,应当理解在相邻磁道的强影响之下出现了相邻磁道擦除。此外,根据对实施方案3-2至3-4与比较例3-9的比较,应当理解重要的是即使在按照与在磁性层45的初始层周围相同方式的磁性层45的中心周围,也包括Si氧化物并且具有高浓度的Cr氧化物。如果包含在其中心周围的Cr氧化物之内的元素浓度之和为从7原子%至20原子%,那么不存在问题。当它在该范围中时,应当理解即使与磁性层45的初始层(第一磁性层451)相比氧化物的浓度变化了,也不存在问题。此外,包括有大量Cr氧化物并且晶界宽度宽的磁性层的下层的比例变为小于磁性层45中的一半不是优选的,因为无法充分地降低磁性层中的交换耦合。然而,当与实施方案3-1—样第一磁性层451包括高浓度的Cr氧化物时,应当理解可使第二磁性层452和第三磁性层453都成为包括Si氧化物并且几乎不包括Cr氧化物的薄膜。如果满足上述条件,那么磁性层45可以由4层或更多层组成并且在每个独立的磁性层中形成了氧浓度的梯度。在该实施方案的介质中,变为热稳定性的指数的-Hn具有159kA/m以上的值并且不存在热问题。图18是对磁存储装置进行说明的示意图。图18(a)是平面示意图并且图18(b)是截面示意图。磁记录介质10由实施方案1至3中的上述垂直磁记录介质组成,并且磁存储装置包括驱动该磁记录介质的介质驱动部分11、具有记录部分和读取部分的磁头12、使磁头相对于磁记录介质移动的致动器13和向磁头输入/从磁头输出信号的信号处理系统。图19对磁头12与磁记录介质10之间的关系进行说明。将磁头12的磁飞行高度控制为4nm,隧道式磁阻元件(TMR)用于读取单元20的读取单元21,并且将屏蔽间隙长度和磁道宽度分别控制为50nm和50nm。在记录单元22的主磁极23周围形成了环绕式屏蔽24,并且将主磁极尖的几何磁道宽度控制为80nm,将主磁极与尾部屏蔽之间的间隙控制为50nm,并且将主磁极与侧屏蔽之间的间隙控制为80nm。主磁极23、垂直磁记录介质10的软磁性底层和辅助磁极25构成了磁路,并且通过将电流发送到形成了与磁路的互连的薄膜导体线圈26、使其穿过垂直磁记录介质10的磁性层和软磁性底层以及回到辅助磁极25,而从主磁极23产生了磁通量。通过利用本发明的介质将每厘米的磁道间距密度控制为86614磁道并且将每厘米的线性记录密度控制为472441位,可确保以每平方厘米40.9千兆位进行操作,并且可确保相邻磁道擦除具有在实际使用中不存在问题的级别(l以下)。此外,结合实施方案2-2的介质,通过将每厘米的磁道间距密度控制为87795磁道并且将每厘米的线性记录密度控制为531496位,可确保以每平方厘米46.7千兆位进行操作,并且可确保相邻磁道擦除具有在实际使用中不存在问题的级别(l以下)。权利要求1.一种垂直磁记录介质,包括底层,该底层位于衬底上;磁性层,该磁性层形成于所述底层上,在该磁性层中包含具有圆柱形结构的主要是由Co、Cr和Pt组成的磁性颗粒和氧化物;以及铁磁性金属层,该铁磁性金属层形成于所述磁性层上并且不包含氧化物,其中所述磁性层是由下述至少两个层组成的,所述至少两个层包括形成于所述底层侧的第一磁性层以及形成于所述铁磁性金属层侧的第二磁性层,其中所述第一磁性层的晶界包括Cr氧化物以及从Si、Ti、Nb和Ta中选择出来的至少一种氧化物,并且所述第二磁性层的晶界包括从Si、Ti、Nb和Ta中选择出来的至少一种氧化物,其中包含在Cr氧化物之中的Cr和氧的元素浓度之和小于所述第一磁性层中的Cr和氧的元素浓度之和并且低于5原子%。2.根据权利要求1的垂直磁记录介质,其中所述第二磁性层的晶界宽度窄于所述第一磁性层的晶界宽度。3.根据权利要求1的垂直磁记录介质,其中所述铁磁性金属层的晶粒与所述第二磁性层的晶粒以1对多或多对1的对应性而存在,并且所述铁磁性金属层的晶粒具有连续地生长在所述第二磁性层的晶界上的结构。4.根据权利要求1的垂直磁记录介质,其中所述铁磁性金属层的晶粒小于所述第二磁性层的晶粒。5.根据权利要求1的垂直磁记录介质,其中在从所述铁磁性金属层侧的所述第二磁性层的界面起大约2nm的薄膜厚度的区域中包含在Cr氧化物之中的Cr元素和氧元素的浓度之和是4.3原子%以下。6.根据权利要求1的垂直磁记录介质,其中在从衬底侧的所述第一磁性层的界面起大约4mn的薄膜厚度的区域中包含在Cr氧化物之中的Cr元素和氧元素的浓度之和是7原子%以上且20原子%以下。7.根据权利要求1的垂直磁记录介质,其中包含在所述第二磁性层的氧化物之中的各元素总量是3.6原子%以上且13原子%以下。8.根据权利要求1的垂直磁记录介质,其中包含在所述第一磁性层的氧化物之中的各元素的总量是15原子%以上且30原子%以下。9.根据权利要求1的垂直磁记录介质,其中-在所述第二磁性层与所述铁磁性金属层之间提供了CoRu合金层、CoCr合金层或具有CoCr和Si02的粒状结构的层。10.—种垂直磁记录介质,包括底层,该底层位于衬底上;磁性层,该磁性层形成于所述底层上,在该磁性层中包含具有圆柱形结构的主要是由Co、Cr和Pt组成的磁性颗粒和氧化物;以及铁磁性金属层,该铁磁性金属层形成于所述磁性层上并且不包含氧化物,其中所述磁性层包含Cr氧化物,从所述底层侧的界面至邻近中心的晶界包括Cr氧化物以及从Si、Ti、Nb和Ta中选择出来的至少一种氧化物,并且在所述铁磁性金属层侧的界面附近的晶界包括从Si、Ti、Nb和Ta中选择出来的至少一种氧化物,其中包含在Cr氧化物之中的Cr和氧的元素浓度之和小于衬底侧的Cr和氧的元素浓度之和并且低于5原子%。11.根据权利要求IO的垂直磁记录介质,其中所述铁磁性金属层侧的所述磁性层的晶界宽度窄于从所述底层侧的界面至邻近中心的晶界宽度。12.根据权利要求IO的垂直磁记录介质,其中所述铁磁性金属层的晶粒与所述磁性层的晶粒以1对多或多对1的对应性而存在,并且所述铁磁性金属层的晶粒具有连续地生长在所述磁性层的晶界上的结构。13.根据权利要求IO的垂直磁记录介质,其中所述铁磁性金属层的晶粒小于所述磁性层的晶粒。14.根据权利要求IO的垂直磁记录介质,其中在从所述铁磁性金属层侧的所述磁性层的界面起大约2nm的薄膜厚度的区域中包含在Cr氧化物之中的Cr元素和氧元素的浓度之和是4.3原子%以下。15.根据权利要求IO的垂直磁记录介质,其中在从衬底侧的所述磁性层的界面起大约4nm的薄膜厚度的区域中包含在Cr氧化物之中的Cr元素和氧元素的浓度之和是7原子。/。以上且20原子%以下。16.根据权利要求10的垂直磁记录介质,其中包含在所述铁磁性金属侧的所述磁性层的区域中的氧化物之中的各元素总量是3.6原子%以上且13原子%以下。17.根据权利要求10的垂直磁记录介质,其中包含在所述底层侧的所述磁性层的区域中的氧化物之中的各元素的总量是15原子%以上且30原子%以下。18.根据权利要求IO的垂直磁记录介质,其中在所述磁性层与所述铁磁性金属层之间提供了CoRu合金层、CoCr合金层或具有CoCr和Si02的粒状结构的层。19.一种磁存储装置,包括-垂直磁记录介质;用于在记录方向上驱动所述垂直磁记录介质的单元;具有写入头和读出头的磁头;用于相对于所述垂直磁记录介质而言驱动所述磁头的单元;以及用于对所述磁头的输入信号和输出信号进行处理的信号处理单元,其中根据权利要求1至18中任一项的垂直磁记录介质用作所述垂直磁记录介质。全文摘要提供了一种具有优异分辨率、S/N和小相邻磁道擦除的垂直磁记录介质。在衬底41上形成了用于对磁性层的取向和偏析进行控制的底层42、43和44,包括有氧化物以及主要由Co、Cr和Pt所组成的磁性材料的合金的磁性层45,以及不包含氧的铁磁性金属层46。磁性层45具有包括有铁磁性颗粒和氧化物的至少两个层,作为更靠近衬底的磁性层的部分的第一磁层451具有主要是由Cr氧化物以及从Si、Ti、Nb和Ta中选择出来的至少一种氧化物所组成的晶界,并且位于铁磁性金属层侧的第二磁性层452的晶界包括从Si、Ti、Nb和Ta中选择出来的至少一种氧化物,其中Cr氧化物小于第一磁性层。文档编号G11B5/66GK101373600SQ20081021105公开日2009年2月25日申请日期2008年8月20日优先权日2007年8月21日发明者中川宏之,伊藤直人,市原贵幸,荒木亮子申请人:日立环球储存科技荷兰有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1