自旋阀磁致电阻传感器及采用此传感器的磁记录系统的制作方法

文档序号:6744048阅读:150来源:国知局
专利名称:自旋阀磁致电阻传感器及采用此传感器的磁记录系统的制作方法
技术领域
本发明涉及一种检测磁场的基于自旋阀效应的磁致电阻(MR)传感器及装有此类传感器的磁记录系统。
一种MR传感器通过由磁性材料制作的读出元件的电阻变化来探测作为磁通强度和方向的函数、由读出元件检测到的磁场信号。带规的MR传感器,如IBM‘Corsair’磁盘机中所用的,是基于各向异性磁致电阻(AMR)效应而运作的。即读出元件的电阻分量随读出元件的磁化(方向)与流过读出元件的感生电流的方向间夹角余弦的平方而变化。记录数据可从磁媒体读出,因为来自记录磁媒体的外磁场(信号场)引起读出元件中磁化的变化,继而引起读出元件中电阻的变化及感生电流或电压的相应变化。
一种差动的更显著的磁致电阻,称为巨磁致电阻(GMR)或自旋阀磁致电阻(SVMR),已在各种磁的多层结构中观测到,其基本特点是至少有两个被一非铁磁金属层隔开的铁磁金属层。这种GMR效应已在各种层系发现,诸如呈现铁磁层的强非铁磁耦合的Fe/Cr或Co/Cu多层系,以及两层铁磁之一层,其磁化取向是固定的或是“钉扎的”基本不耦合的分层结构。其物理素性与所有类型结构相同施加一外磁场引起相邻铁磁层相对磁化取向的变化。继而引起与自旋有关的外层电子散射的变化,并使结构电阻变化。该结构电阻随铁磁层磁化的相对取向的变化而变化。
一种特别实用的GMR是夹层结构,包括两个被一非磁金属隔离层隔开的基本不耦合的铁磁层,而其中的铁磁层之一的磁化方向是“钉扎的”。可通过在待钉扎的铁磁层上淀积一反铁磁性的铁锰层、使两相邻的层交换耦合,以达到钉扎。非钉扎的或“自由的”铁磁层具有其外展部的磁化(在中间检测区两侧的自由层的那些部位)虽也固定,但其方向与钉扎层的磁化垂直,因此仅自由层中间区的磁化是自由的,使其在有外磁场的情况下旋转。一般,在自由层外展部的礠化,由于与反铁磁层的交换耦合,也是固定的。然而,用在这的非铁磁材料必须有别于所用的铁锰反铁磁材料,以钉住该钉扎层。最终的结构是自旋阀磁致电阻(SVMR)传感器,仅其中的自由铁磁层是自由的,以在有外磁场的情况下旋转。美国专利5,206,590(转让于IBM)公开一种基础的SVMR传感器。美国专利5,159,513(也转让于IBM)公开一种SVMR传感器,其中的铁磁层中至少一层是钴或钴合金,在外加磁场为零的情况下,借助于钉扎铁磁层与反铁磁层的交换耦合,使其中的两个铁磁层的磁化基本上保持相互垂直。
具有最直的线性响应、最宽的动态范围的SVMR传感器是一种其钉扎的铁磁层的磁化平行于信号磁场,自由的铁磁层的磁化垂直于信号磁场的器件。在SVMR传感器被用于水平磁记录磁盘机的情况下,这意味着,传感器的平面垂直于磁盘表面,以钉扎层的磁化取向垂直于磁盘表面,而自由层的磁化取向平行于磁盘表面。难以获得这种磁化取向的原因在于由钉扎层所产生的偶极磁场。该钉扎层具有一净磁矩,因而基本上起到一种宏观的二极磁铁的作用,其磁场作用到自由层。在读出元件的高度比较小的SVMR传感器中,这种静磁耦合之结果是使自由层的磁化方向不一致。这就导致在有信号磁场的情况下,使传感器的各部位过早地饱和,它限制了传感器的动态范围,以及磁记录系统的记录密度和所有的性能。
一同时待审的相关申请477涉及一种SVMR传感器,采用多层膜,叠合的钉扎的铁磁层代替常规的单层钉扎层,致力于此问题。该叠合钉扎层至少有两层穿过一层薄的反铁磁(AF)耦合膜相互反铁磁耦合的铁磁膜。因为将该钉扎的铁磁膜的磁矩统调成相互反平行,基本上可使这两个磁短相互抵消。结果是基本上没有对自由铁磁层有不利影响的偶极场。
在使用单层钉扎层或同时待审的申请所描述的叠合钉扎层的SVMR传感器中,钉扎该层的优选方法是通过Fe—Mn反铁磁层的交换耦合。使用Fe—Mn作为交换耦合层存在若干问题。由Fe—Mn所产生的交换场强对温度极为敏感。当温度升高时,Fe—Mn“软化”,决定钉扎铁磁层磁化的能力下降。因而,SVMR传感器能被静电放电(FSD)电流及Fe—Mn的发热而毁坏。Fe—Mn比用于SVMR传感器的其它材料更容易受锈蚀影响。这事实要求细心控制制作工艺步骤,并使用能保护SVMR的材料。使用Fe—Mn还要求用于交换的反铁磁材料给由不同材料,优选为Ni—Mn制成的自由铁磁层的外展部以偏磁。为提供足够的交换耦合场强,Ni—Mn必须在接近240℃下退火。在此温度下,会发生其它材料与自由铁磁层的互扩散。这可导致磁致电阻的减弱,各向异性场强增大,并使自由铁磁层的磁致伸缩有很大变化。
所需要的是一种没有与Fe—Mn交换耦合层相关的缺陷,而具有一钉扎铁磁层,使与自由铁磁层的静磁耦合减至最小的SVMR传感器。
本发明是一种改进的SVMR传感器及装有该传感器的磁记录系统。该SVMR传感器使用一自钉扎叠合层作为钉扎的铁磁层代替常规的单层钉扎层。因为这种叠合的层是“自一钉扎的”,无需一硬偏磁或交换偏磁层。该自钉扎叠合层具有至少两层穿过一薄的反铁磁(AF)耦合膜相互反铁磁耦合的铁磁膜。因为这两层在叠合层中的铁磁膜已将其磁矩统调成反平行,通过恰当选择厚度,可使这两个磁矩基本上抵消。作用到该叠合层上的信号磁场所产生的磁场能量将显著小于该叠合层的有效各向异性能量。这是因为,前者正比于两层铁磁膜的厚度差,而后者正比于厚度和。其结果,该叠合层在有信号磁场的情况下不会明显旋转,而会被“自钉扎”。清除了先前为“自钉扎”所需要的交换偏磁层,也消除了对Ni—Mn的要求,及其相关的高温工艺,因为可用其它反铁磁体,诸如Fe—Mn—Cr或NiO代之。
为充分理解本发明的本质及优点,应结合附图阅读下面的详细说明。


图1是用于根据本发明的SVMR传感器的磁记录磁盘机的简略结构图。
图2是图1的磁盘机去掉上盖后的顶视图。
图3是现有技术SVMR传感器的、表示钉扎铁磁层及其相关的交换偏磁层的分解透视图。
图4是从磁盘方看到的图3中现有技术SVMR传感器的视图,并表示出盖层和电引线。
图5是从磁盘方看到的本发明的SVMR传感器的视图。
虽然以图1所示的磁盘存储系统概括对本发明的SVMR传感器的描述,但本发明也适用于其它磁记录系统,如磁带记录系统,以及采用磁致电阻元件作位单元的一些磁随机存取存储系统。
参照图1,以剖面图说明使用MR传感器型的现有技术磁盘机的原理图。该磁盘机包括一基座10,在其上固定一磁盘驱动电动机12和执行机构14,以及一上盖11。基座10和上盖为磁盘机提供一个大致密闭的外壳。一般,在基座10和上盖14间有个衬垫13,还有一个通气口(未图示),以平衡磁盘机内部与外界间的气压。磁记录盘16通过转轴18与驱动电机12相连接,使磁盘固定在转轴上,以便被驱动电机12旋转。在磁盘16的表面涂有一薄层润滑脂膜50。一读/写磁头或传感器25装在一承载件,如气承滑块20的尾端。传感器25可以是一感性读、写传感器或一个感性写入传感器带一个待描述的SVMR读出传感器。滑块20通过一刚性臂22和一个悬臂24与执行机构14相连接。悬臂24提供一偏压力,使滑块20压在记录磁盘16的表面上。在磁盘机运作过程中,驱动电机12使磁盘以恒定速度旋转,执行机构14一般是一直线或旋转音圈电动机(VCM),使滑块20在磁盘16的表面上做普通的径向移动,可使读/写磁头选取磁盘16上的不同数据磁迹。
图2是去掉上盖11后的磁盘机内部的顶视图,更详细地表明,悬臂24提供一个力,将滑块20压向磁盘16。悬臂可以是常规型的悬臂,如在IBM的美国专利4,167,765中所描述的周知的Watrous悬臂。此类悬臂也给滑块提供一个常平附件,当滑块悬浮在气承上时容许滑块俯仰起伏。由变换器25从磁盘16上探测到的数据经信号放大和设在臂22上的集成电路芯片15中的处理电路处理成数据读回信号。该信号从变换器25经柔性电缆17传至芯15,再经电缆19送出输出信号。
上面对一般的磁盘存储系统的以及附图1和2的描述仅仅是为了说明的目的。应该明了磁盘存储系统可以包含大量的磁盘和执行机构,而每个执行机构又可支撑若干个滑块。此外,磁头承载件可以是使磁头保持与磁盘接触或接近接触的一种支承,例如液承或其它形式接触磁盘机,代替气承滑块。
一种现有的SVMR传感器30示于图3。薄膜形成的完成传感器被支撑在一合适的衬底31上。该SVMR传感器30可以形成图1和图2的磁盘机系统中变换器25的部件,而衬底31可以是磁头承载件或滑块20的尾端。
在衬底31上淀积一缓冲层33,然后是软铁磁材料的第一薄层35。在层35上淀积一薄非铁磁金属隔离层37、铁磁材料的第二薄层39以及具有较高电阻并直接与铁磁层39接触的交换偏磁材料的薄层41。然后蚀刻层37、39、41,使其具有与磁媒体,如磁盘16上数据磁迹的宽度相对应的预定宽度。反铁磁层42、43直接形成在铁磁层35的中心敏感区36两边的外展部位上。图3中未示出耐蚀盖层及层42、43上刻出的电引线图形。
在没有来自记录磁盘16的外加磁场的情况下,两层铁磁材料35、39的磁化的取向夹角,优选约90°,如箭头32和38所示。铁磁层35被称为“自由”铁磁层,因为在其中部区36的磁化是自由的,其磁化方向随外加磁(如图3所示的磁场h)而旋转,如层35上虚箭头所示。铁磁层39被称为“钉扎”铁磁层,因为其磁化取向被固定或“钉扎”在优选方向上,如箭头38所示。层41由交换耦合提供一偏磁场,因而将铁磁层39的磁化钉扎在优选的方向(箭头38)上,使得在有其强度在磁盘16的信号磁场范围内的外加磁场的情况下,其磁化方向也不能做有意义的旋转。同样,层42、43由交换耦合给自由铁磁层35中部区36的外展部提供纵向偏磁。这就确保自由铁磁层35的中部敏感区36的磁化在有外加磁场的情况下,一般保持垂直于钉扎铁磁层39的磁化方向。
图4是从磁盘16表面应看到的图3的结构视图。图4还示出了盖层44和刻成图形的用来实现与传感器30电连接的电引线45、46。钉扎铁磁层39具有由指向纸面的箭头38所代表的净宏观磁矩。与此磁矩相关的磁场对中部敏感区36的自由铁磁层35有作用。自由层35的磁化方向(箭头32)与钉扎层39的磁化方向形成近似90°的角度。来自钉扎层39的磁场使自由层35的磁化不均匀。在有来自磁媒体的外加信号砀的情况下,非均匀磁化使部分传感器30过早地饱和。
反铁磁交换耦合层41及42、43的使用是分别钉扎铁磁层39和自由层35外展部的磁化的优选方法。然而,第二铁磁层39和自由层35的外展部的磁化可用另一方法钉扎,如使用本领域公知的硬偏磁层(未图示)。交换偏磁层41及42、43一般由合适的反铁磁材料,诸如铁锰(Fe—Mn)或镍锰(Ni—Mn)制成。但,层41必须用不同于层42、43所用材料的反铁磁材料制成。这是因为,必须使层41的磁化方向垂直于层42、43的磁化方向。在加工过程中,给反铁磁材料施加外加磁场并加热到特定的使其磁化定向的临界温度。必须选择不同的材料,以使当一种材料上升到使其磁化定向的临界温度时,该温度层低于另一种材料的临界温度,应使其磁化不受影响。这样,层41一般由Fe—Mn制成,其临界温度大约是160℃,而层42、43由Ni—Mn制成,其临界温度大约是240℃。
上述实施例是针对用于磁记录磁盘机的SVMR传感器的。然而,本发明的SVMR元件也适合用于磁随机存取存储系统。在此实例中,用SVMR元件作为位单元,而自由层和钉扎层的磁化方向的取向应是平行或反平行,而不是垂直。
在本发明中,SVMR传感器中的单层钉扎铁磁层代之以自旋叠合结构,包括被一薄的反铁磁耦合膜隔开的至少两层铁磁膜。省掉了用于钉住钉扎层的反铁磁层。由叠合的钉扎层构成的两层铁磁膜是通过适当类型适当厚度的反铁磁耦合膜相互反铁磁耦合的,以使其磁化方向为相互反平行取向。
根据本发明的SVMR传感器的优选实施例示意地表示在图5,类似图4,是从磁媒体应看到的结构视图。然而,图5所示的SVMR传感器60是从图4的现有技术SVMR传感器颠倒过来的钉扎层和自由层制成的。
图5所示的SVMR传感器60是在有外加磁场的情况下,用DC磁控管溅射淀积法制作的。首先,在衬底61上淀积一层50—100的钛膜(Ta)作为缓冲层62,在本实施例中衬底是玻璃。然而,衬底也可是别的材料,诸如半导休材料或用作常规滑块的陶瓷材料。代替图3的现有技术结构中的单层钉扎层39的铁磁层70是一自钉扎的叠合结构。它包括直接形成在Ta缓冲层62厚度在20—50范同的第一钴(Co)膜72、淀积在第一Co膜72上的厚3—10的钉(Ru)膜73及形成在Ru膜73上的厚10—40A的第二Co膜74。膜72、74的易磁化轴取向,由于外加磁场,而垂直于图平面(指向纸面)。在SVMR传感器60的所有膜全淀积之后,应设定两层膜72、74的磁化方向。磁化方向如图所示,对膜72,如箭头76所示指向媒体,对膜74,如箭头78所示,背离媒体。反之亦然。
在第二Co膜74上淀积厚20—40的铜(Cu)层63,作为非铁磁金属隔离层。虽然在本发明中,用Cu作为隔离层,但也可使用导电率高的其它非铁磁金属材料,诸如银(Ag)、金(Au)及其合金。
然后,在隔离层63上形成自由铁磁层64。它包括淀积在Cu隔离层63上的厚3—12的Co膜65及淀积在Co膜65上的厚15—60的Ni—Fe膜66。构成自由铁磁层64的两层膜65、66均是在有与淀积钉扎层72、74过程中所用的相同外加磁场的情况下淀积的,以便仍由该磁场限定自由层64的易磁化轴。另一种办法,外加磁场应从其先前的方向转90°。自由铁磁层64的磁化方向应在SVMR传感器60的所有膜余淀积并刻图之后设定。磁化方向将如箭头67所指,即一般平行于媒体,而分别垂直于钉扎膜72、74的磁化方向76、78。虽然在本优选实施例中,自由铁磁层64包括邻接Cu隔离层63的薄Co膜65,但该膜65也可以是Co合金。还可以形成单铁磁材料的自由铁磁层64。该Co或Co合金膜65增加了传感器的磁致电阻,但保持相对的薄,在2—20范围内,以将较“硬”磁Co材料对传感器的磁导率的作用减至最小。
在淀积自由铁磁层64之后,在其上形成第一Ta层69。接着,掩蔽自由铁磁层64中部区80顶上的Ta层69。然后将结构返回溅射淀积室,施加取向垂直于原来取向的外加磁场。然后蚀刻Ta层69、露出自由铁磁层64的横向外展部81、82。Ta的蚀刻限定了自由铁磁层64的中部敏感区80的边界90、91。边界90、91之间的区域80的宽度一般选择与磁媒体上数据磁迹的宽度相符。由于该宽度在微米(10,000)范围,图5未按比例绘制,以便能显示传感膜。
然后,在自由铁磁膜66的横向外展部81、82上淀积反铁磁交换偏磁层83、84。这就使外展部81、82的磁化方向设定成垂直于其原来的轴。虽未在图5中示出,在横向外展部81、82上首先淀积附加的Ni—Fe也是合乎要求的,因为在先前蚀刻过程中,已从膜66上去掉某些Ni—Fe。在本优选实施例中,用于层83、84的材料是Fe—Mn—Cr。然后给Fe—Mn—Cr施加外磁场,并加热到180℃明显低于Ni—Mn所要求的温度240℃。Fe—Mn—Cr层83、84给自由层外展部81、82提供纵向偏磁,使其磁化固定在箭头67的方向。在磁场中附加的加热和冷却步骤确保外展部81、82维持所要的磁化取向。。
在Fe—Mn—Cr反铁磁交换偏磁层83、84上再淀积厚40—60的Ta盖层85,为传感器60提供耐蚀性。另一些适合盖层的材料是高阻材料,诸如钌(Ru)、锆(Zr)或CuAu合金。
图5还示意地表明了磁记录系统中用来将SVMR传感器60连接到检测电路的装置。在敏感区80外侧的盖层85上淀积电引线86、87,优选用Au或覆盖Ta的Au形成,以便在SVMR传感器60与电流源88及与检测装置89之间形成电路通路。
在完成传感器的几何图形结构之后,通过施加充分大的磁场(~10KOe)设定层72、74的磁化。由于形状的有向性及钉扎外展部81、82的作用,层66的磁化方向是自设定的。
在本优选实施例中,当自由铁磁层64的中部区80的磁化随来自磁媒体的外加磁场旋转时,由检测装置探测出SVMR60的磁阻变化而检测媒体中的磁信号。
在叠合的钉扎层70中的两层Co膜的磁化方向分别由箭头76、78指示。两层Co模72、74的反平行统调磁化是由于Ru反铁磁耦合膜73的反铁磁交换耦合作用。因为这种反铁磁耦合,并因为两层Co膜72、74的厚度基本样同,各个膜的磁矩大致可相互抵消。因此,叠合层70的净磁矩实质上是小于两单独膜72、74磁矩之和。
在图5所示的本实施例中,虽然自钉扎叠合铁磁层70包括由单层反铁磁耦合膜73隔开的两层反铁磁耦合膜72、74,层70可以包括更多个由反铁磁耦合膜隔开的铁磁膜。
根据叠合钉扎层70中对铁磁膜72、74及反铁磁耦合膜73所选取的材料,优选反铁磁耦合膜的厚度,可使铁磁膜变成强反铁磁耦合。然而,反铁磁耦合膜的厚度一定不能薄到在该膜出现影响其反铁磁耦合强度的数量可观的钉孔。反铁磁耦场的强弱呈现一种作为反铁磁膜厚的函数的振荡特性。对选定的材料组合物的振荡耦合关系已被Parkin等人披露(见Phys.Rev.Lett.Vol.64,P.2304,1990)。
虽然SVMR传感器60中的叠合的钉扎层已表明用优选的材料Co和Ru分别作为铁磁和反铁磁耦合膜,但其它材料组合物也是可行的,如铁/铬(Fe/Cr),及其它铁磁材料(诸如Fe、Ni、Co或Fe、Ni或Co的合金)与其它反铁磁耦合膜(诸如Cr,铑(Rh),铱(Ir)及其合金)。然而,对每种材料组合物,应测定其振荡交换耦合关系,对未知的,必须测定,以便选取反铁磁耦合膜的厚度,确保两层铁磁膜间的反铁磁耦合。
若形成叠合的钉扎层70的两层铁磁膜72、74的“存活”厚度相等,那么在理论上,钉扎层的净磁矩应当为零,因为每个磁矩都被精确地抵消(“存活”厚度是指拥有磁矩的钉扎膜72、74的有效厚度,而不包括已与邻接膜混合或被氧化的膜的表层。因而,膜72、74各自的存活厚度是小于其总厚度的)。由于不可能精细地将各个膜做成精确相同的厚度,作为普通淀积工艺的自然结果,钉扎层的净磁矩很可能是个很小但非零的值。然而,最好将钉扎铁磁膜之一故意地淀积到略厚于另一膜的厚度,如图5所示,以使钉扎层内存存小的非零净磁矩。这就确保在有小磁场的情况下,钉扎层70的磁化是稳定的,以利于预先指示磁化方向。
本发明的SVMR60的关键环节是为钉住钉扎铁磁层70的磁化,即未设置邻接钉扎铁磁层70的硬偏磁层,也未设有反铁磁层。去掉了此层,省去了附加工艺步骤,容许Fe—Mn(或在本优选实例中的Fe—Mn—Cr)用作使自由铁磁层63的外展部81、82纵向偏磁的反铁磁层。因此,可消除与使用Ni—Mn相关的问题。
与现有技术使用涉及硬或交换偏磁层的单层钉扎层相反,在本发明的SVMR传感器60中,不需要硬偏磁或交换偏磁层,因为叠合层70是“自钉扎”的。因为叠合的层70中的两层铁磁膜72、74 的厚度几乎相同,但其磁化方向相反,则层70的磁矩很小。外加磁场将产生与小净磁矩外加磁场强度乘积有关的静磁能。外加场能量不会引起叠合层70的旋转,因为该能量小于叠合层70的有效异向性场能。外加场能小于有效异向性场能的原因在于,它正比于两层铁磁膜72、74的存活厚度之差,而有效异向性场能正比于这两层膜存活厚度之和。另外,被自钉扎的叠合层70,膜72、74各自的本征异向性磁场必然比自由层64的耦合场大数倍。这是根据一定的隔离层/自由层的组合,对用于叠合钉扎层70的材料进行选择而实现的。例如,按本实施例的描述及图5的图示,各Co膜层72、74的本征异向性磁场近似60 Oe,而自由层的耦合场在20 Oe以下。叠合层70在有外加信号场的情况下不会旋转,因而是自钉扎的。
根据本发明的SVMR传感器的性能比现有技术有显著的改进。与经受使用Ni—Mn时所要求的240℃加工步骤的SVMR传感器相比,其磁致电阻(△R/R)增大近20—30%,自由铁磁层的各向异性磁场减小近70%。另外,由于高温加工步骤的磁致伸缩变化减少10倍。其结果,经计算信号响应是5mv/μm,比现有技术SVMR传感器改善近300%。
虽然通过优选实施例对本发明做具体地说明与图示,但本领域的技术人员应明了,在不脱离本发明的精神与范畴的前提下,可以做到各式各样的形式上的和细节上的变化。所以,本公开的发明应视为仅仅是为了解释,它只被所附权利要求范围限定。
权利要求
1.一种自旋阀磁致电阻元件,它包括被非磁性材料隔离层隔开的第一和第二铁磁材料层,在外加磁场为零时,所说的第一铁磁材料层的磁化方向的取向相对于所说的第二铁磁材料层的磁化方向有一角度,第二铁磁材料层包括相互反铁磁耦合的第一和第二铁磁膜,以及将两层铁磁膜隔开的一层反铁磁耦合膜,其中的该元件不包括用于钉扎第二铁磁层磁化的硬偏磁层或交换偏磁层。
2.一种根据权利要求1的自旋阀磁致电阻元件,其特征在于,第二铁磁层中的反铁磁耦合膜实质上由Ru构组。
3.一种根据权利要求1的自旋阀磁致电阻元件,其特征在于,第二铁磁层中的第一和第二铁磁膜实质上由Co构成。
4.一种根据权利要求1的自旋阀磁致电阻元件,其特征在于,第二铁磁层中的第一和第二铁磁膜是由选自Co、Fe、Ni及Co、Fe或Ni的合金组成的集合的一种材料制成,第二铁磁层中的反铁磁耦合膜是由选自Ru、Cr、Rh、Ir及其合金组成的集合的一种材料制成。
5.一种根据权利要求1的自旋阀磁致电阻元件,其特征在于,第二铁磁层的净磁矩实质上小于第二铁磁层中第一和第二膜的磁矩之和。
6.一种根据权利要求1的自旋阀磁致电阻元件,其特征在于,第二铁磁层中的第一和第二膜的磁矩基本上相同。
7.一种根据权利要求1的自旋阀磁致电阻元件,其特征在于,非磁隔离层包括选自Ag、Au、Cu及Ag、Au和Cu的合金组成的集合的一种材料。
8.一种自旋阀磁致电阻传感器,它包括一衬底;以及一形成在该衬底上的分层结构,该分层结构包括一在无外加磁场的情况下具有一定的磁化方向的自由铁磁层一邻接该自由铁磁层的非磁性隔离层;一邻接该隔离层,其磁化取向与自由铁磁层的磁化有一角度的第一钉扎铁磁膜;一邻接第一钉扎铁磁膜的反铁磁耦合膜;一邻接该反铁磁耦合膜,并与第一钉扎铁磁膜反铁磁耦合的反铁磁耦合膜,以使其磁化方向大致反平于第一钉扎铁磁膜的第二钉扎铁磁膜,以及其中的该传感器没有用于钉住该钉扎铁磁层磁化的硬偏磁层或交换偏磁层。
9.一种根据权利要求8的自旋阀磁致电阻传感器,其特征在于,在第一和第二钉扎铁磁膜之间的反铁磁耦合实质上由Ru构成。
10.一种根据权利要求8的自旋阀磁致电阻传感器,其特征在于,该第一和第二钉扎铁磁膜是由选自Co、Fe、Ni及Co、Fe或N的合金细成的集合的一种材料制成,该反铁磁耦合膜是由选自Ru、Cr、Rh、Ir及其合金组成的集合的一种材料制成。
11.一种根据权利要求8的自旋阀磁致电阻传感器,其特征在于,第一和第二钉扎铁磁膜的磁矩基本上相同。
12.一种根据权利要求8的自旋阀磁致电阻传感器,其特征在于,自由铁磁层与第一钉扎铁磁膜之间的非磁隔离层包括选自Ag、Au、Cu及Ag、Au、和Cu的合金组成的集合的一种材料。
13.一种根据权利要求8的自旋阀磁致电阻传感器,其特征在于,自由铁磁层包括邻接隔离层的Co或Co合金的薄膜。
14.一种自旋阀磁致电阻传感器,它包括一衬底;一形成在该衬底上的叠合自钉扎层,它包括第一和第二铁磁膜及介于第一和第二铁磁膜之间的,将第一和第二铁磁膜的磁化方向统调为大致反平行的反铁磁耦合膜;一邻接自钉扎叠合层的第二铁磁膜形成的非磁性隔离层;一邻接该隔离层所形成的自由铁磁层,其磁化取向在没有外加磁场的情况下,大致垂直于自钉扎叠合层的第一和第二铁磁膜的磁化方向,以及其中的传感器没有用于钉位自钉扎叠合层中第一和第二铁磁膜磁化的硬偏磁层或交换偏磁层。
15.一种根据权利要求14的自旋阀磁致电阻传感器,其特征在于,自由铁磁层具有一中部敏感区和在中部敏感区两侧的外展部,并还包括用于纵向偏磁自由层外展部的磁化,邻接自由铁磁层外展部所形成的Fe—Mn合金层。
16.一种根据权利要求14的自旋阀磁致电阻传感器,其特征在于,介于自钉叠合层的第一和第二膜之间的反铁磁耦合膜实质上由Ru构成。
17.一种根据权利要求14的自旋阀磁致电阻传感器,其特征在于,自钉扎铁磁层中的第一和第二膜由选自Co、Fe、Ni及Co、Fe或Ni的合金组成的集合的一种材料制成,反铁磁耦合膜由选自Ru、Cr、Rh、Ir及其合金组成的集合的一种材料制成。
18.一种根据权利要求14的自旋阀磁致电阻传感器,其特征在于,自钉扎铁磁层中的第一和第二膜的磁矩基本上相同。
19.一种根据权利要求14的自旋阀磁致电阻传感器,其特征在于,介于自由铁磁层和自钉扎叠合层之间的非磁性隔离层包括选自Ag、Au、Cu及Ag、Au和Cu的合金组成的集合的一种材料。
20.一种根据权利要求14的自旋阀磁致电阻传感器,其特征在于,自由铁磁层包括邻接隔离层的Co或Co合金薄膜。
21.一种根据权利要求14的自旋阀磁致电阻传感器,其特征在于,自钉扎叠合层位于衬底和自由铁磁层之间。
22.一种根据权利要求21的自旋阀磁致电阻传感器,其特征在于,还包括介于衬底和自钉扎叠合层之间的缓冲层。
23.一种根据权利要求21的自旋阀磁致电阻传感器,其特征在于,还包括形成在自由铁磁层之上的盖层。
24.一种磁存储系统,它包括一具有用于记录数据的多条磁迹的磁存储媒体;一磁变换器,在磁变换器与磁存储媒体向相对运动过程中,保持接近碳存储媒体,磁变换器包括自旋阀磁致电阻传感器,该传感器包括被非磁性材料隔离层隔开的第一和第二铁磁材料层,在外加磁场为零时,所说的第铁磁材料层的磁化方向与所说的第二铁磁材料层的磁化方向有一角度,第二铁磁材料包括相互反铁磁耦合的第一和第二铁磁膜,以及将两层铁磁膜隔开的一层反铁磁耦合膜,其中的该传感器不包括用于钉扎第二铁磁层磁化的硬偏磁层或交换偏磁层;以及一与磁致电阻传感器耦合的,用于探测磁致电阻传感器中的电阻随表征记录在磁存储媒体中的、被磁致电阻传感器监测到的数据位磁场的变化的装置。
25.一种根据权利要求24的系统,其特征在于,第二铁磁层中的反铁磁耦合层实质上由Ru构成。
26.一种根据权利要求24的系统,其特征在于,第二铁磁层中的第一和第二铁磁膜实质上由Co构成。
27.一种根据权利要求24的系统,其特征在于,第二铁磁层中的第一和第二铁磁膜由选自Co、Fe、Ni及Co、Fe、或Ni的合分组成的集合中的一种材料制成,第二铁磁层中的反铁磁耦合膜由选自Ru、Cr、Rh、Ir及其合金组成的集合中的一种材料制成。
28.一种根据权利要求24的系统,其特征在于,第二铁磁层层的净磁矩基本上小于第二铁磁层中的第一和第二膜磁矩之和。
29.一种根据权利要求24的系统,其特征在于,第二铁磁层中的第一和第二膜的磁矩基本相同。
30.一种根据权利要求24的系统,其特征在于,非磁性隔离层包括选自Ag、Au、Cu及Ag、Au或Cu的合金组成的集合中的一种材料。
31.一种磁记录磁盘机,它包括一磁记录磁盘;一用于旋转该磁盘的与该磁盘相连接的电动机;一用于检测磁盘的磁记录数据的自旋阀磁致电阻传感器,该传感器包括一叠合自钉钆层,它包括第一和第铁磁膜,及介于第一和第二铁磁膜之间的反铁磁耦合膜,用于将第一和第二铁磁膜的磁化方向统调为大致反平行;一邻接自钉扎叠合层的第二铁磁膜形成的非磁性隔离层;一邻接该隔离层所形成的自由铁磁层,其磁化取向在没有外加磁场的情况下,大致垂直于自钉扎叠合层的第一和第二磁膜的磁化方向,其中的传感器没有用于钉住自钉扎叠合层中第一和第二铁磁膜磁化的硬偏磁层或交换偏磁层。一支撑自旋阀磁致电阻传感器的承载件,承载件具有一基片,传感器连接在基片上;一使承载体大致跨起磁盘径向运动的执行机构,以使传感器可在磁盘上选取不同的磁记录数据区;一将承载件与执行机构相连,用于使承载件保持接近磁盘的装置;一与传感器电耦合,用于探测传感器电阻随由传感器检测到的来自磁记录磁盘的磁场的变化;以及一用于支撑电动机和执行机构的装置。
32.一种根据权利要求31的磁盘机,其特征在于,自由铁磁层具有中部敏感区及在中部敏感区两侧的外展部,还包括邻接自由铁磁层所形成的,用于纵向偏磁自由层外展部的磁化的包括Fe、Mn的合金层。
33.一种根据权利要求31的磁盘机,其特征在于,介于自钉扎叠合层第一和第二膜之间的反铁磁耦合膜实质上由Ru构成。
34.一种根据权利要求31的磁盘机,其特征在于,自钉扎铁磁层由选自Co、Fe、Ni及Co、Fe或Ni的合金组成的集合中的一种材料制成,反铁磁耦合膜由选自Ru、Cr、Rh、Ir及其合金组成的集合中的一种材料制成。
35.一种根据权利要求31的磁盘机,其特征在于,叠合的自钉扎层的净磁矩实质上小于叠合的自钉层中的第一和第二膜磁矩之和。
36.一种根据权利要求31的磁盘机,其特征在于,介于自由铁磁层和叠合的自钉层之间的非磁性隔离层包括选自Ag、Au、Cu及Ag、Au和Cu的合金组成的集合中的一种材料。
37.一种根据权利要求31的磁盘机,其特征在于,自由铁磁层包括邻接隔离层的Co或Co合金薄膜。
38.一种根据权利要求31的磁盘机,其特征在于,叠合的自钉扎层位于衬底和自由铁磁层之间。
39.一种根据权利要求38的磁盘机,其特征在于,还包括介于衬底和叠合的自钉扎层之间的缓冲层。
40.一种根据权利要求38的磁盘机,其特征在于,进一步包括在自由铁磁层上形成的盖层。
全文摘要
一种磁记录系统使用了一种改进的自旋阀磁致电阻(SVMR)传感器。该SVMR传感器具有一叠合的自钉扎层作为钉扎铁磁层,代替常规的自层钉扎层。因为该叠合层是“自钉扎”的,则无需硬偏磁或交换偏磁层。该叠合的自钉扎层具有至少两层穿过一反铁磁(AF)耦合薄膜相互反铁磁耦合的铁磁膜。
文档编号G11C11/15GK1121178SQ9510732
公开日1996年4月24日 申请日期1995年5月31日 优先权日1994年6月15日
发明者凯文·罗伯特·科菲, 布鲁斯·奥文·格尼, 戴维·尤格尼·黑姆, 哈拉兰博斯·莱法科斯, 丹尼尔·莫里, 维吉尔·西蒙·斯波里奥苏, 丹尼斯·理查德·维尔霍伊特 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1